西门子数字工业软件近日宣布,已与英特尔代工(Intel Foundry)合作,为该厂的嵌入式多芯片互连桥接器 (EMIB) 方法开发全面的工作流程,实现异构芯片的封装内高密度互连。
利用西门子业界领先的集成电路和PCB设计方面的专业知识和世界级技术,英特尔的EMIB技术可提供先进的集成电路封装解决方案,涵盖规划和原型设计,直至在FCBGA、2.5/3D IC 等广泛的集成技术中实现签核(signoff)。
Intel Foundry副总裁兼产品与设计生态系统总经理Rahul Goyal表示:“我们正在为客户提供高度创新的先进封装技术。”“与西门子的合作使我们能够定义一个经过认证的、做好生产准备的EMIB技术参考流程,并将其提供给我们的客户,以便他们能够高效、有效地进行设计。”
借助这一新的Intel Foundry工作流程,双方客户可以处理一系列关键任务,包括早期封装装配原型设计、分层器件平面规划、协同设计优化、完整详细实施验证(包括信号和电源完整性分析)以及封装装配设计工具包(PADK)驱动的装配验证。
该参考流程采用的西门子技术包括 Xpedition™ Substrate Integrator 软件、Xpedition™ Package Designer 软件、Hyperlynx™ 软件 SI/PI 和Calibre®nmPlatform 工具(包括 Calibre® 3DSTACK 软件)。
西门子数字工业软件Electronic Board Systems高级副总裁 AJ Incorvaia 表示:“西门子很高兴能够与英特尔代工合作,为英特尔的创新EMIB 技术开发和提供经过认证的参考流程。”作为英特尔的长期供应商,西门子很荣幸被选中参与这个项目,并期待着分享我们的 3D-IC 专业技术,为我们的共同客户带来价值。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。