微软公司一个负责利用黑客手段发现网络安全问题的团队开源了一个内部工具PyRIT,该工具可以帮助开发人员发现人工智能模型中的风险。
研究人员于本周四发布了该框架的代码。微软表示,PyRIT可以自动生成数以千计的对抗性人工智能提示,来测试神经网络能否有效抵御黑客的攻击。该工具主要用于处理文本,但其构建的方式也允许开发人员添加图像等人工智能支持的输入类型。
PyRIT最初是微软人工智能红队测试团队内部使用的脚本集。该团队负责模拟针对新人工智能模型的网络攻击,以便能够抢在黑客之前找到弱点。研究人员们不断扩展脚本的附加功能,直到代码库发展成了本周发布的PyRIT框架。
在将新创建的人工智能模型部署到生产中之前,开发人员必须对其进行几类风险测试。他们必须查找网络安全风险,例如可能导致模型编写恶意软件的提示。软件团队还需要查找人工智能可能产生幻觉的情况,并确定其是否会被诱骗泄露训练数据集中的敏感信息。
有些模型不仅会生成文本,还会生成图像等其他类型的输出,这让这个任务变得更加复杂。必须对每一种输出的类型以及用户与人工智能交互的每一个软件界面分别重复进行脆弱性测试。这就意味着要想彻底测试神经网络需要开发人员制作数千个对抗性提示,这通常是不切实际的。
微软创建PyRIT就是为了消除这一限制。该公司表示,这个框架允许开发人员指定某种类型的对抗性人工智能输入,并自动生成数千个符合标准的提示。这些提示可被用于测试以网络服务形式实现的人工智能,以及通过应用编程接口提供的模型。
微软的研究人员在一篇详细介绍该框架的博文中强调:“PyRIT并不能取代生成式人工智能系统的人工红队。”“相反,它增强了人工智能红队成员现有的领域专业知识,并为他们自动完成繁琐的任务。”
PyRIT不仅能生成对抗性提示,还能评估目标模型的响应情况。据微软称,内置的评分引擎会自动判断开发人员正在测试的模型在响应提示时是否会产生有害输出。软件团队可以选择用针对相同任务构建的外部神经网络替换默认评分引擎。
由于能够分析人工智能的响应,因此PyRIT适合执行所谓的多轮风险评估。该框架可以向人工智能输入对抗性提示,分析其反应,并相应地调整下一个提示,使其更加有效。微软的研究人员解释说:“虽然单轮攻击策略的计算时间更快,但多轮红队测试可以实现更逼真的对抗行为和更先进的攻击策略。”
好文章,需要你的鼓励
字节跳动智能创作实验室发布革命性AI视频数据集Phantom-Data,解决视频生成中的"复制粘贴"问题。该数据集包含100万个跨场景身份一致配对,通过三阶段构建流程实现主体检测、多元化检索和身份验证,显著提升文本遵循能力和视频质量。
这是一项关于计算机视觉技术突破的研究,由多家知名院校联合完成。研究团队开发了LINO-UniPS系统,能让计算机像人眼一样从不同光照下的照片中准确识别物体真实的表面细节,解决了传统方法只能在特定光照条件下工作的局限性,为虚拟现实、文物保护、工业检测等领域带来重要应用前景。
被盗凭证导致80%的企业数据泄露。随着AI智能体投入生产,管理10万员工的企业将需要处理超过100万个身份。传统身份访问管理架构无法应对智能体AI的大规模部署。领先厂商正采用蓝牙低功耗技术替代硬件令牌,实现基于距离的身份验证。行为分析可实时捕获被入侵的智能体,零信任架构扩展至智能体部署。这代表了自云计算普及以来最重要的安全变革。
这篇文章介绍了北京人工智能研究院开发的OmniGen2模型,一个能够同时处理文字转图像、图像编辑和情境生成的全能AI系统。该模型采用双轨制架构,分别处理文本和图像任务,并具备独特的自我反思机制,能够自动检查和改进生成结果。研究团队还开发了专门的数据构建流程和OmniContext评测基准,展现了开源模型的强大潜力。