微软公司一个负责利用黑客手段发现网络安全问题的团队开源了一个内部工具PyRIT,该工具可以帮助开发人员发现人工智能模型中的风险。
研究人员于本周四发布了该框架的代码。微软表示,PyRIT可以自动生成数以千计的对抗性人工智能提示,来测试神经网络能否有效抵御黑客的攻击。该工具主要用于处理文本,但其构建的方式也允许开发人员添加图像等人工智能支持的输入类型。
PyRIT最初是微软人工智能红队测试团队内部使用的脚本集。该团队负责模拟针对新人工智能模型的网络攻击,以便能够抢在黑客之前找到弱点。研究人员们不断扩展脚本的附加功能,直到代码库发展成了本周发布的PyRIT框架。
在将新创建的人工智能模型部署到生产中之前,开发人员必须对其进行几类风险测试。他们必须查找网络安全风险,例如可能导致模型编写恶意软件的提示。软件团队还需要查找人工智能可能产生幻觉的情况,并确定其是否会被诱骗泄露训练数据集中的敏感信息。
有些模型不仅会生成文本,还会生成图像等其他类型的输出,这让这个任务变得更加复杂。必须对每一种输出的类型以及用户与人工智能交互的每一个软件界面分别重复进行脆弱性测试。这就意味着要想彻底测试神经网络需要开发人员制作数千个对抗性提示,这通常是不切实际的。
微软创建PyRIT就是为了消除这一限制。该公司表示,这个框架允许开发人员指定某种类型的对抗性人工智能输入,并自动生成数千个符合标准的提示。这些提示可被用于测试以网络服务形式实现的人工智能,以及通过应用编程接口提供的模型。
微软的研究人员在一篇详细介绍该框架的博文中强调:“PyRIT并不能取代生成式人工智能系统的人工红队。”“相反,它增强了人工智能红队成员现有的领域专业知识,并为他们自动完成繁琐的任务。”
PyRIT不仅能生成对抗性提示,还能评估目标模型的响应情况。据微软称,内置的评分引擎会自动判断开发人员正在测试的模型在响应提示时是否会产生有害输出。软件团队可以选择用针对相同任务构建的外部神经网络替换默认评分引擎。
由于能够分析人工智能的响应,因此PyRIT适合执行所谓的多轮风险评估。该框架可以向人工智能输入对抗性提示,分析其反应,并相应地调整下一个提示,使其更加有效。微软的研究人员解释说:“虽然单轮攻击策略的计算时间更快,但多轮红队测试可以实现更逼真的对抗行为和更先进的攻击策略。”
好文章,需要你的鼓励
瑞典央行与金融机构及国家安全部门深化合作,共同应对网络威胁。今年5月,瑞典遭遇大规模分布式拒绝服务攻击,政府和金融机构受到严重冲击。总理克里斯特松承诺增加资金支持,建立更强大的公私合作伙伴关系。央行将举办第二届在线网络安全挑战峰会,鼓励金融机构提升网络安全能力。瑞典金融协会敦促建立危机管理机制,与国家网络安全中心等机构协调配合。
字节跳动发布Seedream 4.0多模态图像生成系统,实现超10倍速度提升,1.4秒可生成2K高清图片。该系统采用创新的扩散变换器架构,统一支持文字生成图像、图像编辑和多图合成功能,在两大国际竞技场排行榜均获第一名,支持4K分辨率输出,已集成至豆包、剪映等平台,为内容创作带来革命性突破。
工作压力源于大脑储存混乱而非系统。本文介绍5个ChatGPT提示词,帮你将工作压力转化为结构化行动:优先级排序任务清单、快速撰写专业邮件回复、从冗长文档中提取关键信息、生成问题解决方案、高效准备会议内容。通过系统化处理工作事务,将分散的精力转为专注执行,让大脑专注于决策而非重复劳动。
红帽公司研究团队提出危险感知系统卡(HASC)框架,为AI系统建立类似"体检报告"的透明度文档,记录安全风险、防护措施和问题修复历史。同时引入ASH识别码系统,为AI安全问题建立统一标识。该框架支持自动生成和持续更新,与ISO/IEC 42001标准兼容,旨在平衡透明度与商业竞争,建立更可信的AI生态系统,推动行业协作和标准化。