交通运输业是一个多式联运的全球人员与货物运输网络体系,总价值高达10万亿美元。但现如今,该行业正面临一系列外部与自身内部挑战:补贴、网络碎片化、运输方式竞争,以及日益严重的拥堵、排放、安全等等。过时的政府政策导致效率低下,传统的技术方法虽在特定地区取得了渐进式发展,但仍未实现广泛转变。这在一定程度上源自交通运输行业的固有局限,同时在很大程度上也受到公众观点及行为模式转变带来的冲击。
整个交通运输行业当前可谓是一团乱麻——从兴奋到沮丧,再由便捷到成本,竟让人不知该如何下手。因此,引导政策变化与技术进步已经构成严峻挑战,要求决策者和从业企业在努力缓解公众交通成本负担的同时(事实证明,交通成本往往在家庭总支出中位列第二),还须应对行业内一系列彼此冲突的愿景、控制迅速上涨的交通成本并遵循严格的审查要求。
好消息是,又一波创新浪潮有望弥补这一差距。生成式AI能够将政策与技术有效结合起来,重组并优化我们的客货运输方式。
生成式AI对于交通运输业来说有何特别?
与专注于分析封闭系统中现有数据的传统预测技术不同,生成式AI能够深入研究思维与创造层面,让实时可视化成为可能,而后以多种方式在不同的时间和地点提供支持。生成式AI还能为不同背景的不同用户群体提供更好的可及性,包括面向车辆设计师、城市规划者、社区倡导者、政策制定者和商界从业者等。这种良好的可及性,让信息、访问与协作提升到了前所未有的新高度。
大多数人既不熟悉政策文件和专业术语,也不知道该如何理解二维设计、建筑或施工计划、场地规划或按颜色区分的社区地图。但人们更擅长理解图像或配有语音的视频。凭借着能够分析少量数据集的强大算法以及所生成的全新真实数据,生成式AI能够利用实时图像与视频向不同水平的人们展示周遭环境及相应感受。
简单对着两、三个潜在场景搞设计的日子已经一去不复返了。很快,不同团队和社群就将聚集在一起,根据各自认同的共同价值观与期望,携手规划街区、运输车辆、服务或站点的数十种运行场景。这样的设计成果与人们的最初设想有很大不同,新方案也往往会涉及大量人们根本没想到过的重要变量。
设想一下,AI不仅能够处理交通模式下的数据,还可以根据历史数据、天气预报、个人及文化偏好以及实时趋势,建立起对未来状况的模拟系统。这种从周遭现有事物中创造新事物的能力,正是让生成式AI在交通运输行业大放异彩的前提与根本。
生成式AI正在各行各业得到广泛应用,展示着它到底是什么、能做些什么。而交通运输将是其发挥作用的下一片舞台。
交通行业生成式AI的独特属性:
企业正在使用生成式AI,通过可视化与视频形式改善设计方案的可读性。
考虑到生成式AI自身的独特功能属性,这项技术也有望给交通体系带来前所未有的新颖应用:
生成式AI已经在交通运输行业中的各个领域生根发芽。
这还只是众多潜在应用中的几个示例。我们可以设想一套交通体系,它既能无缝调整交通流量、也能在故障发生之前做出预测性维护,更可以为每位出行者提供定制化的通勤体验。生成式AI就是这样一项强大的新兴技术,在优化客运与货运方面已经表现出巨大的潜力。虽然尚处于早期发展阶段,但这也意味着我们刚刚接触到生成式AI那最为浅表的可能性。除了优化日常运营之外,相信生成式AI也将成为塑造未来交通运输面貌的游戏规则改变者。
但发挥这方面潜能所需要的不仅仅是技术本身,更需要以人为本的新方法。我们既需要了解生成式AI的“效果”(如何优化交通路线),更需要理解这背后的“理由”(将如何影响我们的生活)。为了更好地驾驭这波即将到来的AI浪潮,我们应当从以下几个角度入手,为生成式AI在交通运输领域的应用做好准备:
承担数据责任:没有数据就没有AI
技能培养与赋能:
促进创新与协作:
交通领域的生成式AI普及已经开始——你准备好了吗?
本文讨论的种种潜在用例和场景,还只是生成式AI在交通运输领域可能应用的一抹剪影。随着这项新兴技术的发展成熟,将有更多实践方案与大家见面。尽管仍有一些挑战亟待解决,但生成式AI在打造更绿色、更公平的交通新形态方面确实表现出巨大潜力,只等我们将这一切转化为现实。
通过积极接纳生成式AI所固有的局限性和应用潜力,相信我们能够相互配合、引导其发挥最大价值。我们也应当以负责任的方式驾驭这股即将席卷全球的力量,确保生成式AI在交通运输领域成为积极变革的因素。只要能够抛开分歧、共同塑造起以信任和责任为基础的发展观念,我们就一定能够运用好AI工具,为建设美好明天这一共同愿景填上交通运输这块重要的拼图。
好文章,需要你的鼓励
这项由加州大学圣地亚哥分校和微软研究院合作开发的REAL框架,通过程序分析反馈训练大型语言模型生成高质量代码。与传统方法不同,REAL采用强化学习将代码安全性和可维护性作为奖励信号,不依赖人工标注或特定规则。研究在多个数据集上的实验表明,REAL在保证功能正确性的同时显著提高了代码质量,有效解决了"即兴编程"中的安全漏洞和维护性问题,为AI辅助编程提供了新的范式。
加州大学伯克利分校与Meta FAIR研究团队开发了"Self-Challenging"框架,让大语言模型通过自己创建和解决任务来提升能力。该方法引入创新的"Code-as-Task"格式,包含指令、验证函数、示例解决方案和失败案例,确保生成的任务既可行又有挑战性。在工具计算、网页浏览、零售服务和航班预订四种环境测试中,仅使用自生成训练数据,Llama-3.1-8B模型性能提升了两倍多,证明AI可以通过自我挑战实现有效学习,减少对人类标注的依赖。
南洋理工大学与SenseTime Research合作提出了PoseFuse3D-KI,一种创新的人体中心关键帧插值框架。该方法将3D人体模型信息融入扩散过程,解决了现有技术在处理复杂人体动作时产生扭曲结果的问题。研究团队开发了专门的SMPL-X编码器直接从3D空间提取几何信息,并设计了融合网络将3D线索与2D姿态无缝整合。他们还构建了CHKI-Video数据集,包含2,614个视频片段及完整的人体标注。实验结果显示,PoseFuse3D-KI在PSNR上提升9%,LPIPS减少38%,显著超越现有方法。
这项研究提出了LongGuide算法,解决了大型语言模型在长文本生成任务中的局限性。研究团队发现,仅依靠上下文学习无法使模型充分掌握文本的语言和格式特性。LongGuide通过自动生成两种指导原则:度量指导原则和输出约束指导原则,显著提升了模型性能。在七种长文本生成任务中,该方法使开源和闭源模型的ROUGE-L评分平均提高约6%。LongGuide具有通用性强、易于学习、成本效益高等优点,为提升AI长文本生成能力提供了新方向。