IMDEA材料研究所和马德里科技大学(UPM)的研究人员已开发出一种创新的数字孪生技术,可以实时分析复合材料制造过程。
该突破性成果的论文题为《通过液态成型实现结构复合材料智能制造的数字孪生》(A digital twin for intelligent manufacturing of structural composites via liquid molding),发表在《国际先进制造技术杂志》(The International Journal of Advanced Manufacturing Technology)上。
论文的作者是 IMDEA 材料研究所研究人员Carlos González教授、Joaquín Fernández-León博士和Keayvan Keramati博士以及UPM的Luis Baumela博士。
作者在论文中提出了一种数字孪生技术,用于分析使用树脂传递模塑(RTM)的结构复合材料的制造过程。
论文的共同作者、IMDEA材料研究所结构复合材料研究小组负责人González教授表示,“据我所知,这是首个用于分析复合材料制造过程的数字孪生系统。”
数字孪生是一个物体、部件或系统的虚拟模型或表现形式,可以通过传感器实时更新数据,传感器可以置于物体本身或纳入到制造过程中。
例如,飞机部件或涡轮机可以配备各种传感器,用于监控关键功能区域。
这些传感器获得的数据可直接纳入虚拟模型,虚拟模型然后可根据接收到的信息进行模拟,以识别潜在的材料故障或性能问题。
不过,上述新设计的数字孪生系统与类似应用的不同之处在于,新设计的数字孪生侧重于复合材料制造过程本身,而不是仅限于对制造部件生产的后期分析。
这种主动能力可以实现实时优化和早期故障检测,标志着模拟辅助数字制造领域的重大进步。
González 教授表示,“我们在这篇文章中提出的数字孪生系统可以在整个制造过程中为制造商提供材料的实时图像。”
González 教授还表示,“这样就可以监控模具的填充情况、材料的多孔程度、是否存在孔洞等等。”
RTM 是液态复合材料成型 (LCM) 中的先进技术,其特点是能够以经济高效的方式生产具有降低空隙含量的高性能复合材料零件。
通过将RTM与数字孪生技术相结合的方法可以对注塑压力和固化时间等关键工艺参数进行实时监控和动态调整,从而显著提高最终产品质量和生产效率。
Fernández-León博士表示,“我们研究的下一步是开发先进的数字孪生技术,使操作员不仅能够详细监控生产过程,还能够直接干预并根据预测建模进行实时调整。”
Fernández-León博士接着表示,“例如,可以包括根据数字孪生的预测分析自动调整树脂注射压力或模具温度,防止缺陷形成,为高度优化的智能制造铺平道路。”
好文章,需要你的鼓励
PDF协会在欧洲会议上宣布,将在PDF规范中添加对JPEG XL图像格式的支持。尽管Chromium团队此前将该格式标记为过时,但此次纳入可能为JXL带来主流应用机会。PDF协会CTO表示,选择JPEG XL作为支持HDR内容的首选解决方案。该格式具备广色域、超高分辨率和多通道支持等优势,但目前仍缺乏广泛的浏览器支持。
华东理工大学团队开发了3DEditFormer系统和3DEditVerse数据集,首次实现了无需手工3D遮罩的高质量3D模型编辑。该技术通过双重引导注意力和时间自适应门控机制,让3D编辑变得像2D修图一样简单直观,在游戏开发、影视制作、AR/VR等领域具有广阔应用前景,标志着3D编辑技术向普及化迈出重要一步。
Ironclad OS项目正在开发一个新的类Unix操作系统内核,面向小型嵌入式系统,计划支持实时功能。该项目的独特之处在于采用Ada编程语言及其可形式化验证的SPARK子集进行开发,而非常见的C、C++或Rust语言。项目还包含运行在Ironclad内核上的完整操作系统Gloire,使用GNU工具构建以提供传统Unix兼容性。
上海AI实验室联合多所高校突破多模态AI训练难题,提出NaViL原生训练方法。通过预训练语言模型起点、混合专家架构和视觉-语言能力最佳平衡三大创新,在有限资源下实现与拼装式模型相当性能。该研究证明原生训练的可行性,为AI真正理解图文结合提供新思路,有望在教育、医疗等领域带来更自然的人机交互体验。