地球水循环从理论上看好像简单,但在实践中却很难预测。再加上不断变化的气候,预测过程就会变得更加复杂。水循环专家需要来自浩瀚大地的高分辨率数据才能模拟地球上的水。
水循环的建模必须足够复杂,要包括土壤湿度和山上的积雪等。最近,研究人员构建了迄今为止最详细的水循环模型,在地球水循环建模方面迈出了重要的一步。
地球的数字孪生
由意大利国家研究委员会的Luca Brocca博士带领的一个研究小组为地中海盆地的水循环创建了数字孪生案例研究。
他们的目标是设计一个非专家可以运行的交互式计算机模拟系统。他们在题为“陆地水循环的数字孪生:通过高分辨率地球观测窥见未来”的研究报告中描述了他们的工作成果。
科学家可以利用地球的数字孪生体通过不断更新数据模拟最好和最坏的情况。科学家还可以借助地球的数字孪生体在危险情况发生之前评估风险并监测危险因素的变化。这些信息对于可持续发展和保护弱势群体非常重要。
Brocca和他的团队利用大量卫星数据建立了一个数字孪生模型。他们将这些数据与量化的降水、土壤测量、河流排水、蒸发和积雪深度等新地球观测数据整合在一起。获得的新数据包括更频繁的跨时空测量,每小时一次,每公里一次。
更高分辨率的数据可生成更详细的图像,类似更多像素的屏幕。该团队的科学家们利用这些数据建立了一个模型,建好的模型可以整合到云平台中进行模拟和可视化。最终,他们创建了一个互动工具平台,任何人都可以用这个工具平台绘制山体滑坡和洪水等风险地图。
通过模拟规划未来
该研究团队首先对波河(Po River)流域进行了数字孪生建模。然后他们将该数字孪生扩展到地中海地区的其他地方。团队的专家们在未来计划将该数字孪生扩展到整个欧洲,并通过合作将同样的原理应用到全球各地。
该平台的主要用途是改善洪水和滑坡预测以及优化水资源管理。该项目要在更加基层地区发挥作用的话则需要更精细的数据和更复杂的建模。例如,要最大限度地发挥数字孪生平台在农业方面的潜力就需要以几十米而不是几百米为单位的数据分辨率。
而且还需要考虑其他的挑战,包括更多的卫星数据验证所需的地面观测数据、向模型传输卫星数据的延迟,以及日益复杂的数据处理算法。
完美的模型是不存在的,地球的数字孪生也不完美。
此外,卫星数据可能包含不确定性,必须适当地描述这些不确定性才能令用户准确了解模型的可靠性。
Brocca认为,机器学习和人工智能可以很好地解决这些挑战。其做法是采取简化数据质量评估、增强数据分析和收集及处理的速度等方法。
好文章,需要你的鼓励
文章详细介绍了Character.AI这款主要面向娱乐、角色扮演和互动叙事的AI聊天工具的原理、用户群体、特色功能以及面临的法律与伦理争议,同时揭示了其新推出的视频和游戏互动体验。
上海人工智能实验室研究团队开发了MMSI-Bench,这是首个专注于多图像空间智能评估的全面基准。研究人员花费300多小时,从12万张图像中精心构建了1000道问题,涵盖了位置关系、属性和运动等多种空间推理任务。评测结果显示,即使最先进的AI模型也仅达到41%的准确率,远低于人类的97%,揭示了AI空间认知能力的重大缺陷。研究还识别了四类主要错误:物体识别错误、场景重建错误、情境转换错误和空间逻辑错误,为未来改进提供了明确方向。
思科报告指出,自主型人工智能未来三年内有望承担高达68%的客户服务任务,通过个性化与前瞻性支持提升效率与节省成本,但用户仍重视人与人之间的互动和健全的治理机制。
卡内基梅隆大学研究团队开发了ViGoRL系统,通过视觉定位强化学习显著提升AI的视觉推理能力。该方法让模型将每个推理步骤明确锚定到图像的特定坐标,模拟人类注视点转移的认知过程。与传统方法相比,ViGoRL在SAT-2、BLINK等多项视觉理解基准上取得显著提升,并能动态放大关注区域进行细节分析。这种定位推理不仅提高了准确性,还增强了模型解释性,为更透明的AI视觉系统铺平道路。