芝加哥大学领导的研究表明,AI技术驱动的“数字孪生”能够对婴儿微生物组进行建模,从而预测婴儿成长后期可能出现的神经发育问题。
利用早产儿粪便样本中的极早期肠道微生物组相关数据,数字孪生能够非常准确地预测其后期微生物组构成,以及相对应的神经发育缺陷。
这篇论文被发表在《科学进展》期刊上,研究的主要作者、来自芝加哥大学的Ishanu Chattopadhyay在一份声明中表示,“我们只需观察微生物组的快照并分析各类菌群的不同水平,即可快速得出结论。这是因为在早产儿当中,微生物组会持续变化并发育成熟。”
“因此,我们开发出一种使用生成式AI为微生物组构建系统数字孪生的新方法,该系统能够模拟菌群变化时的相互作用。”
这项研究仍处于早期阶段,但如果得到验证,研究小组相信其可以帮助预测哪些婴儿可能需要早期微生物组移植,以帮助他们改善神经发育情况。
作者们在论文中写道,“越来越多的证据表明,微生物失调会导致多种疾病的发生和发展,包括影响基本消化过程乃至通过微生物群-肠-脑这条行进轴影响中枢神经系统。”
“虽然学术界已经观察到微生物组在包括早产儿在内的人体大脑发育中的作用,以及微生物失调与神经炎症及神经发育障碍之间的关系,但其沿肠脑轴运作的具体机制仍是个未被彻底解开的谜团。”
为了推动对这一领域的探索,Chattopadhyay及其同事使用从88名早产儿的398份粪便样本中提取到的16S核糖体RNA谱来指导并训练数字孪生模型。提供这些数据的婴儿有些出现了神经发育问题,有些则健康无恙,这就让AI得以学会如何预测新生儿的潜在发育问题。
研究小组发现,数字孪生能够预测发育欠缺与头围生长不良的风险,对受试者特征的正确覆盖率高达76%。妊娠30周时的阳性预测正确率为95%,特异性预测正确率为98%。
研究人员计算出,早期微生物组移植能够帮助约45%的婴儿免遭发育问题侵扰,但具体情况还须在未来的工作中进一步验证,特别是错误补充菌群可能带来的负面效应。
Chattopadhyay解释称,“我们不能指望着单靠给予益生菌就降低发育风险。婴儿的微生物组非常重要,在补充时需要从多个角度进行精准把控。”
研究人员还提到,数字孪生模型未来可能会将研究重点放在肠道微生物组中的特定病症与治疗目标身上。与现有研究方法相比,其有望显著缩短诊疗方案的开发周期。
好文章,需要你的鼓励
文章详细介绍了Character.AI这款主要面向娱乐、角色扮演和互动叙事的AI聊天工具的原理、用户群体、特色功能以及面临的法律与伦理争议,同时揭示了其新推出的视频和游戏互动体验。
上海人工智能实验室研究团队开发了MMSI-Bench,这是首个专注于多图像空间智能评估的全面基准。研究人员花费300多小时,从12万张图像中精心构建了1000道问题,涵盖了位置关系、属性和运动等多种空间推理任务。评测结果显示,即使最先进的AI模型也仅达到41%的准确率,远低于人类的97%,揭示了AI空间认知能力的重大缺陷。研究还识别了四类主要错误:物体识别错误、场景重建错误、情境转换错误和空间逻辑错误,为未来改进提供了明确方向。
思科报告指出,自主型人工智能未来三年内有望承担高达68%的客户服务任务,通过个性化与前瞻性支持提升效率与节省成本,但用户仍重视人与人之间的互动和健全的治理机制。
卡内基梅隆大学研究团队开发了ViGoRL系统,通过视觉定位强化学习显著提升AI的视觉推理能力。该方法让模型将每个推理步骤明确锚定到图像的特定坐标,模拟人类注视点转移的认知过程。与传统方法相比,ViGoRL在SAT-2、BLINK等多项视觉理解基准上取得显著提升,并能动态放大关注区域进行细节分析。这种定位推理不仅提高了准确性,还增强了模型解释性,为更透明的AI视觉系统铺平道路。