一种基于人工智能(AI)的新策略正显著加快为帕金森病发现潜在新药的速度。这项发表在《自然化学生物学》杂志上的研究,可能意味着帕金森病新疗法将更快进入临床阶段并与患者见面。
针对严重疾病的药物发现往往是个缓慢、耗时且昂贵的过程。药物开发从早期实验室测试到完全批准用于病患,往往需要10到15年时间。
该研究负责人、英国剑桥大学化学系教授Michele Vendruscolo表示,“这是个极其耗时的过程,单单确定一种主要候选方案并开展进一步测试,就可能需要几个月甚至几年的时间。”
AI与机器学习技术已经为癌症治疗及其他几种疾病发现了潜在药物,并显露出加速这一过程的初步希望。有鉴于此,数十家生物医药初创公司决定全力探索AI在药物发现方面的潜力。
Vendruscolo在一份新闻稿中指出,“为帕金森病寻找潜在治疗方法的一种途径,就是鉴定出能够抑制α-突触核蛋白聚集的小分子。α-突触核蛋白是一种与帕金森病密切相关的蛋白质。”
这项新研究展示了基于AI的药物发现策略如何显著加快这一过程,将成本降低至传统方法的千分之一,发现少量具有潜在疗效的化合物,并将其用于实验室测试。之后,实验结果将被反馈至机器学习模型中以进一步优化预测能力。
帕金森病基金会国家医学顾问兼Fixel神经疾病研究所所长Michael S. Okun博士(并未参与此项研究)表示,“使用AI开发的机器学习方法来开发针对帕金森病等蛋白质聚集类疾病的新时代已经到来。”任教于佛罗里达大学的Okun还补充称,“在这项研究中,AI大模型将筛选命中率提高到了传统高通量药物筛选的20倍以上,着实令人印象深刻。这将为临床试验提供更丰富的备选药物清单。”
根据帕金森病基金会的数据,每年有近9万名美国人被诊断患有帕金森病,目前全美此类病患已达百万之巨。尽管如此,目前还没有治疗这种疾病的有效方法,医生只能用药物来控制症状,包括震颤、失衡、活动障碍以及肌肉僵硬。
Vendruscolo解释称,“机器学习正在对药物发现领域产生实际影响,并且加快了发现最有希望候选药物的整个过程。对我们来说,这意味着研究团队可以同时开展多个药物发现项目,而不像过去那样只能逐个进行。随着时间和成本投入的大幅减少,一切皆有可能——这将是一个令人兴奋的时刻。”
然而,发现有希望的新化合物距离药物测试与患者实际试用还有很长的路要走。
Okun总结道,“必须承认,这项创新能否切实加快帕金森病新疗法的发现尚无宝座,毕竟引入更多化合物反而有可能减慢研发速度。所以必须在基础科学研究层面同步推进并投入大量资源,在更好地理解帕金森病发病机理的同时,更精准地运用当前以及其他更新颖的AI衍生药物发现方法。”
好文章,需要你的鼓励
OpenAI和微软宣布签署一项非约束性谅解备忘录,修订双方合作关系。随着两家公司在AI市场竞争客户并寻求新的基础设施合作伙伴,其关系日趋复杂。该协议涉及OpenAI从非营利组织向营利实体的重组计划,需要微软这一最大投资者的批准。双方表示将积极制定最终合同条款,共同致力于为所有人提供最佳AI工具。
中山大学团队针对OpenAI O1等长思考推理模型存在的"长度不和谐"问题,提出了O1-Pruner优化方法。该方法通过长度-和谐奖励机制和强化学习训练,成功将模型推理长度缩短30-40%,同时保持甚至提升准确率,显著降低了推理时间和计算成本,为高效AI推理提供了新的解决方案。
中国科技企业发布了名为R1的人形机器人,直接对标特斯拉的Optimus机器人产品。这款新型机器人代表了中国在人工智能和机器人技术领域的最新突破,展现出与国际巨头竞争的实力。R1机器人的推出标志着全球人形机器人市场竞争进一步加剧。
上海AI实验室研究团队深入调查了12种先进视觉语言模型在自动驾驶场景中的真实表现,发现这些AI系统经常在缺乏真实视觉理解的情况下生成看似合理的驾驶解释。通过DriveBench测试平台的全面评估,研究揭示了现有评估方法的重大缺陷,并为开发更可靠的AI驾驶系统提供了重要指导。