亚马逊网络服务公司(AWS)近日宣布,将推出第四代最节能的高性能定制芯片Graviton4,用于云计算工作负载。
AWS使用基于Arm的Graviton系列处理器为亚马逊弹性计算云(Amazon Elastic Compute Cloud)中现有的各种云计算工作负载提供高性能并降低成本。AWS EC2产品管理总监Rahul Kulkarni 在接受SiliconANGLE采访时表示,Graviton4是对Graviton3的重大升级,计算能力提高了30%,内核增加了50%,内存带宽增加了75%。
Kulkarni表示,Graviton平台始于2018年的Graviton1,它涉及EC2平台背后名为Nitro的基础技术,后者是一种轻量级管理程序,可以实现计算、存储、内存和网络选项的虚拟化。当时,AWS 希望提供一个完整的计算平台堆栈,而Graviton基于Arm的架构效果很好。
Kulkarni表示:“随着一代又一代产品的推出,我们扩大了Gravito适用的工作负载范围。” 第一代产品作为网络应用的概念验证,第二代产品扩大了扩展工作负载的范围,第三代产品内置了浮点运算、机器学习功能和高性能计算。
Kulkarni补充表示:“我们排名前100的客户全部都在Graviton上运行生产工作负载,我们有超过5万名客户在实际使用Graviton。”
目前,Graviton处理器在EC2上有150多种不同的实例类型,它们代表了不同的“样式”,可提供不同的计算、内存和存储属性,满足客户的需要。据亚马逊称,该公司迄今已在30个地区设计、测试和部署了200多万个Graviton CPU。
发布之后,Graviton4 芯片将在Amazon EC2 R8g实例中提供,该实例允许客户提升大规模运行的高性能数据库、内存缓存和大数据分析工作负载执行。R8g实例样式支持每个虚拟处理器 8 GB内存,最多可扩展到192个处理器。Kulkarni表示,这将是推出的第一种实例类型,但计划是要让Graviton4可以实现每一种x86实例系列。
亚马逊表示,SAP、Epic Games和SmugMug等的大客户已经注意到使用Graviton4的R8g实例带来的显著收益。
Honeycomb的现场首席技术官Liz Fong-Jones在接受SiliconANGLE采访时表示:“我们掌握的数据显示,Graviton3和Graviton4的性能提升幅度在25%到35%之间。”Honeycomb是一个全栈软件可观察性平台,从2021年左右的Graviton2开始就一直在使用 Graviton 芯片,并且早就投资转向基于Arm的架构。
Fong-Jones表示,从基于x86 的芯片转换到Graviton 时,整体性能“尾部延迟”(即应用程序响应大多数请求所需的时间)大为改善。然后,随着 Graviton 处理器一代又一代地推出,处理更大的工作负载成为可能。
Fong-Jones表示:“从 Graviton2 到 Graviton3,现在又从 Graviton3 到 Graviton4,我们看到的是尾部延迟保持稳定,性能非常稳定。我们看到吞吐量大幅提高,而完成特定工作负载的CPU利用率在降低。”“这意味着在同样的规模下,你可以在既定数量的实例上处理更多的工作负载。”
鉴于第一块 Graviton 芯片于2018年从 AWS装配线上下线,该公司已经以平均不到一年半产出一款芯片的速度生产出了定制芯片。当被问及公司是否打算保持这种节奏时,Kulkarni表示:“绝对、绝对、绝对会是这样!”
Kulkarni补充表示:“这不是空谈。”“这是基于过去历史的展望,这很大程度上取决于我们的创业实验室和芯片团队的成熟度,他们能够以这种可预测的速度提供这种质量的芯片。”
他解释说,AWS 无法承受任何新一代产品的多次迭代,因为硅片价格的波动可能意味着成本结构的上升。这可能会影响公司帮助客户节省成本的能力,而这一点正是主打性价比的Graviton 系列芯片的核心宗旨。
好文章,需要你的鼓励
OpenAI在最新博客中首次承认,其AI安全防护在长时间对话中可能失效。该公司指出,相比短对话,长对话中的安全训练机制可能会退化,用户更容易通过改变措辞或分散话题来绕过检测。这一问题不仅影响OpenAI,也是所有大语言模型面临的技术挑战。目前OpenAI正在研究加强长对话中的安全防护措施。
北航团队推出VoxHammer技术,实现3D模型的精确局部编辑,如同3D版Photoshop。该方法直接在3D空间操作,通过逆向追踪和特征替换确保编辑精度,在保持未修改区域完全一致的同时实现高质量局部修改。研究还创建了Edit3D-Bench评估数据集,为3D编辑领域建立新标准,展现出在游戏开发、影视制作等领域的巨大应用潜力。
谷歌宣布计划到2026年底在弗吉尼亚州投资90亿美元,重点发展云计算和AI基础设施。投资包括在里士满南部切斯特菲尔德县建设新数据中心,扩建现有设施,并为当地居民提供教育和职业发展项目。弗吉尼亚州长表示这项投资是对该州AI经济领导地位的有力认可。此次投资是谷歌北美扩张战略的一部分。
宾夕法尼亚大学研究团队开发出PIXIE系统,这是首个能够仅通过视觉就快速准确预测三维物体完整物理属性的AI系统。该技术将传统需要数小时的物理参数预测缩短至2秒,准确率提升高达4.39倍,并能零样本泛化到真实场景。研究团队还构建了包含1624个标注物体的PIXIEVERSE数据集,为相关技术发展奠定了重要基础,在游戏开发、机器人控制等领域具有广阔应用前景。