亚马逊网络服务公司(AWS)近日宣布,将推出第四代最节能的高性能定制芯片Graviton4,用于云计算工作负载。
AWS使用基于Arm的Graviton系列处理器为亚马逊弹性计算云(Amazon Elastic Compute Cloud)中现有的各种云计算工作负载提供高性能并降低成本。AWS EC2产品管理总监Rahul Kulkarni 在接受SiliconANGLE采访时表示,Graviton4是对Graviton3的重大升级,计算能力提高了30%,内核增加了50%,内存带宽增加了75%。
Kulkarni表示,Graviton平台始于2018年的Graviton1,它涉及EC2平台背后名为Nitro的基础技术,后者是一种轻量级管理程序,可以实现计算、存储、内存和网络选项的虚拟化。当时,AWS 希望提供一个完整的计算平台堆栈,而Graviton基于Arm的架构效果很好。
Kulkarni表示:“随着一代又一代产品的推出,我们扩大了Gravito适用的工作负载范围。” 第一代产品作为网络应用的概念验证,第二代产品扩大了扩展工作负载的范围,第三代产品内置了浮点运算、机器学习功能和高性能计算。
Kulkarni补充表示:“我们排名前100的客户全部都在Graviton上运行生产工作负载,我们有超过5万名客户在实际使用Graviton。”
目前,Graviton处理器在EC2上有150多种不同的实例类型,它们代表了不同的“样式”,可提供不同的计算、内存和存储属性,满足客户的需要。据亚马逊称,该公司迄今已在30个地区设计、测试和部署了200多万个Graviton CPU。
发布之后,Graviton4 芯片将在Amazon EC2 R8g实例中提供,该实例允许客户提升大规模运行的高性能数据库、内存缓存和大数据分析工作负载执行。R8g实例样式支持每个虚拟处理器 8 GB内存,最多可扩展到192个处理器。Kulkarni表示,这将是推出的第一种实例类型,但计划是要让Graviton4可以实现每一种x86实例系列。
亚马逊表示,SAP、Epic Games和SmugMug等的大客户已经注意到使用Graviton4的R8g实例带来的显著收益。
Honeycomb的现场首席技术官Liz Fong-Jones在接受SiliconANGLE采访时表示:“我们掌握的数据显示,Graviton3和Graviton4的性能提升幅度在25%到35%之间。”Honeycomb是一个全栈软件可观察性平台,从2021年左右的Graviton2开始就一直在使用 Graviton 芯片,并且早就投资转向基于Arm的架构。
Fong-Jones表示,从基于x86 的芯片转换到Graviton 时,整体性能“尾部延迟”(即应用程序响应大多数请求所需的时间)大为改善。然后,随着 Graviton 处理器一代又一代地推出,处理更大的工作负载成为可能。
Fong-Jones表示:“从 Graviton2 到 Graviton3,现在又从 Graviton3 到 Graviton4,我们看到的是尾部延迟保持稳定,性能非常稳定。我们看到吞吐量大幅提高,而完成特定工作负载的CPU利用率在降低。”“这意味着在同样的规模下,你可以在既定数量的实例上处理更多的工作负载。”
鉴于第一块 Graviton 芯片于2018年从 AWS装配线上下线,该公司已经以平均不到一年半产出一款芯片的速度生产出了定制芯片。当被问及公司是否打算保持这种节奏时,Kulkarni表示:“绝对、绝对、绝对会是这样!”
Kulkarni补充表示:“这不是空谈。”“这是基于过去历史的展望,这很大程度上取决于我们的创业实验室和芯片团队的成熟度,他们能够以这种可预测的速度提供这种质量的芯片。”
他解释说,AWS 无法承受任何新一代产品的多次迭代,因为硅片价格的波动可能意味着成本结构的上升。这可能会影响公司帮助客户节省成本的能力,而这一点正是主打性价比的Graviton 系列芯片的核心宗旨。
好文章,需要你的鼓励
邻里社交应用Nextdoor推出重新设计版本,新增本地新闻、实时警报和名为"Faves"的AI功能,用于发现本地商户和地点。该应用与3500家本地出版商合作提供新闻内容,通过Samdesk和Weather.com提供天气、交通、停电等实时警报。Faves功能利用15年邻里对话数据训练的大语言模型,为用户提供本地化AI推荐服务,帮助用户找到最佳餐厅、徒步地点等本地信息。
Skywork AI推出的第二代多模态推理模型R1V2,通过创新的混合强化学习方法,成功解决了AI"慢思考"策略在视觉推理中的挑战。该模型在保持强大推理能力的同时有效控制视觉幻觉,在多项权威测试中超越同类开源模型,某些指标甚至媲美商业产品,为开源AI发展树立了新标杆。
英国生物银行完成了世界上最大规模的全身成像项目,收集了10万名志愿者的超过10亿次扫描数据,用于研究人体衰老和疾病过程。该项目历时11年,每次扫描耗时5小时,投资6200万英镑。目前已有8万人的成像数据供全球研究人员使用,剩余数据将于年底前发布。项目已开发出能预测38种常见疾病的AI工具,并在心脏病、痴呆症和癌症诊断方面取得突破。
这项由北京大学等多所高校联合完成的研究,首次对OpenAI GPT-4o的图像生成能力进行了全面评估。研究团队设计了名为GPT-ImgEval的综合测试体系,从文本转图像、图像编辑和知识驱动创作三个维度评估GPT-4o,发现其在所有测试中都显著超越现有方法。研究还通过技术分析推断GPT-4o采用了自回归与扩散相结合的混合架构,并发现其生成图像仍可被现有检测工具有效识别,为AI图像生成领域提供了重要的评估基准和技术洞察。