IBM近日公布了稳健的第二季度财务业绩,超出了分析师的预期水平,而这主要得益于IBM的企业客户增加了AI支出。IBM股价在盘后交易中上涨了约3%。
该季度IBM的每股收益(不包括股票薪酬等某些成本)为2.43美元,远高于分析师普遍预期的每股2.20美元。收入增长2%,至157.7亿美元,轻松超过华尔街预期的156.2亿美元。
总体来看,IBM的净利润为18.3亿美元,高于去年同期的15.8亿美元。
IBM公司首席执行官Arvind Krishna(如图)在一份声明中表示,IBM的生成式AI业务已增长至20多亿美元,这得益于一年前推出的Watsonx开发平台。
Krishna表示:“鉴于我们上半年的业绩,我们上调了全年自由现金流预期,目前预计自由现金流将超过120亿美元。”三个月前,在之前的财报电话会议上,IBM预计到今年年底自由现金流将达到120亿美元左右。“我们对技术支出的宏观前景仍然充满信心,”Krishna在电话会议上向分析师这样表示。
近几个月来,IBM一直专注于扩展Watsonx平台,该平台使企业能够构建和部署AI聊天机器人,以及增强其他AI程序的代码。此外,IBM于最近开源了Granite系列大型语言模型,以推广IBM其他的一些AI服务。
Global X研究分析师Tejas Dessai表示:“生成式AI的商业化正在加速,让IBM等多元化的企业技术公司能够利用日益增长的、AI集成带来的需求。”
Krishna在电话会议上告诉分析师,IBM继续受到高利率和通货膨胀的影响。尽管世界其他地区存在不确定性,但IBM的主要业务部门继续顺利运转。该季度IBM的软件业务收入为67.4亿美元,比去年同期增长7%,高于华尔街预期的64.9亿美元。
其中,Red Hat的增长率为7%,对于这个收购来的软件业务来说,算是一个相对缓慢的季度,而该业务曾经每季度的增长率一直超过20%。不过,Krishna表示,Red Hat该季度的订单量有所增加,这对今年剩余的时间来说是一个好兆头。
IBM的咨询业务收入为51.8亿美元,较去年同期下降1%,略低于华尔街52.3亿美元的目标。与此同时,IBM的基础设施部门(包括IBM标志性的大型计算机)该季度销售额为36.5亿美元,增长0.8%,高于华尔街普遍预期的53.1亿美元。IBM公司首席财务官Jim Kavanaugh在电话会议上表示,当前一代z16大型机的表现仍然优于之前的销售周期。
IBM的软件业务日益重要,多年来IBM从一家传统硬件公司逐渐转变为一家专注于高增长软件和服务公司,如今这一转型达到了顶峰。IBM一直在努力加速这个转型过程,在今年4月宣布计划以64亿美元收购“基础设施即代码”软件巨头HashiCorp。
HashiCorp在上周的更新中透露,监管机构已经要求提供有关计划收购的更多信息。这表明,交易审批流程可能会因监管审查的加强而延迟,尽管目前尚无迹象表明该交易遭到反对。Krishna告诉分析师,他仍然“非常有信心”这次交易能够在今年年底前完成。
该季度IBM还宣布与Palo Alto Networks建立新的合作伙伴关系。IBM表示,这家安全公司将收购IBM的QRadar软件即服务资产,成为IBM在网络、云和安全运营方面的首选网络安全合作伙伴。
在这次股价上涨之前,IBM的股价今年迄今为止已经上涨14%,与更广泛的标准普尔500指数基本一致。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。