计算机科学研究人员开发出一种新方法,能够在用户需求实际出现之前以无线方式预测他们需要哪些数据,借此提升无线网络的传输带宽和可靠性。这种新方法采用的正是数字孪生技术,能够有效克隆其负责支持的目标网络。
达成目标的关键,在于如何实现边缘缓存。
缓存是指将数据存储在系统或者网络认为用户将在短时间内使用的服务器上。如此一来,系统就能比从原始来源处检索数据更快地满足用户需求。而边缘缓存则强调系统将数据缓存在最靠近最终用户的服务器当中,例如集成至网络路由器中或者与这些路由器共置部署的计算设备。
这篇论文的通讯作者、北卡罗来纳州立大学计算机科学助理教授Yuchen Liu表示,“这项工作中的两大挑战,分别是确定哪些数据需要缓存,以及边缘服务器在任意给定时间点上应该存储多少数据。”
“系统不可能将所有内容都放入边缘缓存当中。如果数据占用了太多计算资源,那么在边缘服务器上存储过多的冗余数据就会降低服务器的速度。因此,系统需要不断决定存储哪些数据包,以及哪些数据包可以丢弃。”
刘教授解释称,“系统对于用户实际需要的数据内容以及边缘服务器应当存储多少数据的预测结果越准确,系统的整体性能就会越好。而我们在这里的工作重点,就在于如何改进这种预测效果。”
他们提出的新边缘缓存优化方法名为D-REC,其中利用了数字孪生技术,数字孪生是根据真实对象构建的虚拟模型。以D-REC为例,数字孪生负责在其中定义无线网络的虚拟模型——包括蜂窝网络以及Wi-Fi网络。
刘教授指出,“这种方法可以应用于任何无线网络,具体取决于系统管理员或者网络运营商的需求。D-REC还可根据用户的需求进行调整。”
在D-REC当中,数字孪生会从无线网络处获取实时数据,并利用这些数据进行模拟,预测用户最有可能请求哪些数据。之后,这些预测将会被发送回网络,以告知网络的边缘缓存决策。由于模拟是由网络外部的计算机所执行,因此整个过程不会降低网络性能。
研究人员使用开源数据集来确定无线网络在使用D-REC的情况下,是否能够运行得更加高效。研究人员为此开展了广泛实验,并在其中引入一系列变量,包括网络规模、网络上的用户数量等等。
刘教授表示,“D-REC的表现优于传统方法。我们的技术提高了网络准确预测哪些数据应当进入边缘缓存的能力。D-REC还能帮助系统更好地对整个网络中的数据存储加以平衡。”
此外,由于D-REC的数字孪生会专注于预测网络行为,因此也能提前识别出各种潜在问题。
“举例来说,如果数字孪生认为某个特定基站或者服务器很可能超载,则可以提前通知网络,并允许其在网络当中重新分配数据,借此保持网络具有良好的性能和可靠性。”
“目前我们正极寻求与网络运营商的合作,希望探索D-REC技术如何在现实场景下提高网络的性能与可靠性。”
他们的论文《数字孪生辅助的数据驱动优化:实现无线网络中的可靠边缘缓存》(Digital Twin-Assisted Data-Driven Optimization for Reliable Edge Caching in Wireless Networks)已经发表在《IEEE通讯选定领域杂志》上。
好文章,需要你的鼓励
Adobe 周二宣布推出适用于 Android 系统的 Photoshop 应用测试版,提供与桌面版相似的图像编辑工具和 AI 功能,初期免费使用,旨在吸引更多偏好手机创作的年轻用户。
弗吉尼亚大学研究团队开发了TruthHypo基准和KnowHD框架,用于评估大语言模型生成生物医学假设的真实性及检测幻觉。研究发现大多数模型在生成真实假设方面存在困难,只有GPT-4o达到60%以上的准确率。通过分析推理步骤中的幻觉,研究证明KnowHD提供的基础依据分数可有效筛选真实假设。人类评估进一步验证了KnowHD在识别真实假设和加速科学发现方面的价值,为AI辅助科学研究提供了重要工具。
文章详细介绍了Character.AI这款主要面向娱乐、角色扮演和互动叙事的AI聊天工具的原理、用户群体、特色功能以及面临的法律与伦理争议,同时揭示了其新推出的视频和游戏互动体验。
亚马逊Nova责任AI团队与亚利桑那州立大学共同开发了AIDSAFE,这是一种创新的多代理协作框架,用于生成高质量的安全策略推理数据。不同于传统方法,AIDSAFE通过让多个AI代理进行迭代讨论和精炼,产生全面且准确的安全推理链,无需依赖昂贵的高级推理模型。实验证明,使用此方法生成的数据训练的语言模型在安全泛化和抵抗"越狱"攻击方面表现卓越,同时保持了实用性。研究还提出了"耳语者"代理技术,解决了偏好数据创建中的困难,为直接策略优化提供了更有效的训练材料。