计算机科学研究人员开发出一种新方法,能够在用户需求实际出现之前以无线方式预测他们需要哪些数据,借此提升无线网络的传输带宽和可靠性。这种新方法采用的正是数字孪生技术,能够有效克隆其负责支持的目标网络。
达成目标的关键,在于如何实现边缘缓存。
缓存是指将数据存储在系统或者网络认为用户将在短时间内使用的服务器上。如此一来,系统就能比从原始来源处检索数据更快地满足用户需求。而边缘缓存则强调系统将数据缓存在最靠近最终用户的服务器当中,例如集成至网络路由器中或者与这些路由器共置部署的计算设备。
这篇论文的通讯作者、北卡罗来纳州立大学计算机科学助理教授Yuchen Liu表示,“这项工作中的两大挑战,分别是确定哪些数据需要缓存,以及边缘服务器在任意给定时间点上应该存储多少数据。”
“系统不可能将所有内容都放入边缘缓存当中。如果数据占用了太多计算资源,那么在边缘服务器上存储过多的冗余数据就会降低服务器的速度。因此,系统需要不断决定存储哪些数据包,以及哪些数据包可以丢弃。”
刘教授解释称,“系统对于用户实际需要的数据内容以及边缘服务器应当存储多少数据的预测结果越准确,系统的整体性能就会越好。而我们在这里的工作重点,就在于如何改进这种预测效果。”
他们提出的新边缘缓存优化方法名为D-REC,其中利用了数字孪生技术,数字孪生是根据真实对象构建的虚拟模型。以D-REC为例,数字孪生负责在其中定义无线网络的虚拟模型——包括蜂窝网络以及Wi-Fi网络。
刘教授指出,“这种方法可以应用于任何无线网络,具体取决于系统管理员或者网络运营商的需求。D-REC还可根据用户的需求进行调整。”
在D-REC当中,数字孪生会从无线网络处获取实时数据,并利用这些数据进行模拟,预测用户最有可能请求哪些数据。之后,这些预测将会被发送回网络,以告知网络的边缘缓存决策。由于模拟是由网络外部的计算机所执行,因此整个过程不会降低网络性能。
研究人员使用开源数据集来确定无线网络在使用D-REC的情况下,是否能够运行得更加高效。研究人员为此开展了广泛实验,并在其中引入一系列变量,包括网络规模、网络上的用户数量等等。
刘教授表示,“D-REC的表现优于传统方法。我们的技术提高了网络准确预测哪些数据应当进入边缘缓存的能力。D-REC还能帮助系统更好地对整个网络中的数据存储加以平衡。”
此外,由于D-REC的数字孪生会专注于预测网络行为,因此也能提前识别出各种潜在问题。
“举例来说,如果数字孪生认为某个特定基站或者服务器很可能超载,则可以提前通知网络,并允许其在网络当中重新分配数据,借此保持网络具有良好的性能和可靠性。”
“目前我们正极寻求与网络运营商的合作,希望探索D-REC技术如何在现实场景下提高网络的性能与可靠性。”
他们的论文《数字孪生辅助的数据驱动优化:实现无线网络中的可靠边缘缓存》(Digital Twin-Assisted Data-Driven Optimization for Reliable Edge Caching in Wireless Networks)已经发表在《IEEE通讯选定领域杂志》上。
好文章,需要你的鼓励
在AI智能体的发展中,记忆能力成为区分不同类型的关键因素。专家将AI智能体分为七类:简单反射、基于模型反射、目标导向、效用导向、学习型、多智能体系统和层次化智能体。有状态的智能体具备数据记忆能力,能提供持续上下文,而无状态系统每次都重新开始。未来AI需要实现实时记忆访问,将存储与计算集成在同一位置,从而创造出具备人类般记忆能力的数字孪生系统。
中国人民大学和字节跳动联合提出Pass@k训练方法,通过给AI模型多次答题机会来平衡探索与利用。该方法不仅提升了模型的多样性表现,还意外改善了单次答题准确率。实验显示,经过训练的7B参数模型在某些任务上超越了GPT-4o等大型商业模型,为AI训练方法论贡献了重要洞察。
OpenAI首席执行官阿尔特曼表示,公司计划在不久的将来投入数万亿美元用于AI基础设施建设,包括数据中心建设等。他正在设计新型金融工具来筹集资金。阿尔特曼认为当前AI投资存在过度兴奋现象,类似于90年代互联网泡沫,但AI技术本身是真实且重要的。他承认GPT-5发布存在问题,并表示OpenAI未来可能会上市。
南加州大学等机构研究团队开发出突破性的"N-gram覆盖攻击"方法,仅通过分析AI模型生成的文本内容就能检测其是否记住了训练数据,无需访问模型内部信息。该方法在多个数据集上超越传统方法,效率提升2.6倍。研究还发现新一代AI模型如GPT-4o展现出更强隐私保护能力,为AI隐私审计和版权保护提供了实用工具。