沃尔玛公司的营销策略一直专注于实惠的价格和无缝的客户服务,现在则延伸到自己的机器学习平台Element上。
沃尔玛全球科技云和数据平台高级副总裁Anil Madan(如图)表示,集中式云原生服务使沃尔玛能够利用大型语言模型的强大功能来开展所有线上和线下业务。
“我们从数据生命周期管理成千上万个数据源。数据生命周期是指数据以原始格式移动,进入中央湖。它经过一定的转换和质量处理以创建数据目录,这个数据目录对我们分析和机器学习的各个方面都有很大帮助,”他强调Element平台如何改变了沃尔玛的云运营状况。“我们企业数据湖的关键要素就是我们如何在尊重安全、数据主权等基本要素的情况下以集中的形式构建它。”
Madan谈到了Element平台如何为沃尔玛的企业及其最佳战略提供支持:
Element的三重模型
沃尔玛使用混合云环境,Element平台为私有云和公有云中的分析处理、机器学习和数据管理提供支持,以打造Madan所描述的无缝的“全渠道”体验。
他说:“我们拥有的是混合多云策略,这基本上帮助我们无缝地集成和运行了与云无关的工作负载,包括应用工作负载和机器学习工作负载。当我们谈到三重[模型]的时候,我们有两个公有云提供商和一个私有云以对称方式出现,这样我们基本上就可以大规模地运行混合多云工作负载。”
Element“三重模型”这个大伞下,是沃尔玛开源的OneOps Cloud Management Platform(也就是Walmart Cloud Native Platform),也就是说,沃尔玛可以在私有云和公有云之间移动应用,以及允许工程师移动数据的数据抽象层。然后,这些云提供商在三个区域进行复制:西部、中部和东部。
[Element的三重模型]基本上提供的是我们按需的基础设施,我们可以在其中采用不同的计算类型,无论是CPU、GPU还是TPU,并在不同的云提供商之间可移植地运行它们。我们还拥有一个非常成熟的MLOps部署框架,基本上可以帮助我们在几分钟内而不是几天内部署这些工作负载。现在,这些因素结合在一起,有助于支持我们所有的生成式AI工作负载,因为现在我们可以互操作不同类型的大型语言模型……在这种三重架构中无缝运行这些模型。”
部署在三重架构中的抽象层,还让工程师更容易训练和扩展AI模型。因此,沃尔玛的AI开发正在快速推进,而无需锁定任何一家供应商。
Madan说:“OneOps有云管理抽象层,WCNP有工作负载管理层,我们为应用开发者提供SDK的时候还有数据管理层。这些抽象层的组合基本上帮助我们提供那些与供应商无关的最佳技术,从而帮助他们在需要时快速交换,同时仍然让他们能够在这种混合多云中相当快速地大规模部署这些技术。”
根据理念定制平台
沃尔玛在开发Element的时候避免只选择一家供应商,目标是保持“每天低成本”的商业模式。开源软件还有助于沃尔玛节省运营成本,帮助客户节省开支。
Madan表示:“Element带来的回报是全方位的。开发者的生产力是一个巨大的回报。对应用工程师和数据科学家来说,最大的好处是,他们可以快速大规模地训练他们的工作负载。他们不需要去寻找数据来创建这些,因为现在所有这些都已经在通用的企业数据湖中为他们解决了。他们只需要选择他们的算法或者他们想要的东西,然后基本上就可以开始运营了。”
据Madan称,Element促进AI的快速发展并不以牺牲安全为代价。沃尔玛已经实施了自己的治理层来检测AI幻觉并降低安全风险,以保持自己作为一家值得信赖的零售商的地位。
Madan说:“沃尔玛的一切都围绕着我们的使命和宗旨……我们是一家以人为本、科技驱动的全渠道零售商,我们的全部目的和目标就是省钱,这样我们才能帮助我们的客户过上更好的生活。安全是我们所做一切的关键基础,所以我们要确保数据的使用和消费方式,以及谁有授权,这些都成为我们指导原则中的关键部分。”
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。