尽管人工智能(AI)辅助诊断有望成为未来医疗领域的新标准,但近期一位宣称“我每天都在使用AI方案”的放射科医师在美国国家医学院研讨会上提出更令人信服的例子,切实表明了AI带来的前景与可能面临的风险。
十多年以来,AI支持的诊断图像分析已经颇为常见,其“影响着我所遇到的每一位病人”,来自北卡罗来纳州格林斯博罗的执业放射科医生、Radiology Partners创新部署总监Jason Poff博士表示。该机构的自有及附属诊所掌握的医学影像在全美占比高达10%左右。
从好的方面来看,AI技术“能够还原一个早在10年之前关于特定事件的样貌”,利用患者记录中的不同数据整理出结构化概述。它还可以在各种意外的临床状况之下检测出异常:例如一位56岁的女性感到左胸疼痛,没有外伤史,放射科医生竟然漏诊了她的肋骨骨折。与人类放射科医生不同,人类可能会在对复杂病例的诊断达到一定数量之后陷入停滞,诊断能力再无寸进;而AI却可以提炼出一切可能性,而不会因为病理学层面的影响因素而分心。
但Poff同时提醒称,“这份收益也绝非纯利无弊,最大的问题在于无法给出确定性的结论。我们花了很多时间深入研究各种失败模式,并意识到AI可能会误导用户。”
AI方案既可以产生误报,导致人类不得不越过AI“以阻止不必要的手术干预”;也可能产生漏报,例如忽略了其训练场景下未曾接受过的重要发现。此外,AI诊断的准确性在不同案例之间的表现也是参差不齐。
Poff补充称,这种不确定性“正是AI方案一直在努力解决的问题”,不过他似乎刻意回避了人类医生也有可能出现同样的情况。
关键在于人类如何与AI交互。例如在实时诊疗病患时,“到底应该在多大程度上信任AI提供的建议?”Poff的建议是,也许可以通过一系列评判指标来反映患者的潜在诊断意见是否处于AI训练的领域之内,例如可能超出领域或者肯定已经超纲。
纽约大学格罗斯曼医学院放射学系研究副主任 Yvonne Lui 博士指出,资金问题也是个很大的难点。在她看来,“AI工具对于人类社会的实际贡献和造成的成本尚不明确”,因为这些工具本身可能非常昂贵。例如,当她的团队尝试使用AI来扫描可能患有乳腺癌的患者的补充影像以降低非必要的复诊时,复诊率、医疗成本以及患者的焦虑感实际上不降反升。
她认为,“我们必须找到能够在AI工具的支持下明确受益的具体用例。”
同样的,Poff团队也试图使用AI来检测气胸(肺塌陷),并发现所有真实病例都能由放射科医生检测发现,但其中同样存在误报比例。
尽管面对挑战,但放射科医生们预测,为了及时处理大量需要阅读和跟进的医学影像,AI技术的应用范围将不可避免地逐步扩大。
最近一项研究似乎给AI技术的适当应用指明了一条道路。这项研究展示了人类与AI交互时带来的积极变化。今年3月发表在《自然医学》杂志上的研究论文发现,AI技术提高了一部分放射科医生的诊断准确率,但同时也干扰了另一部分医生的判断。在后一种情况下,某些本应否决AI建议的临床医生似乎在被带着走,而能够从建议中受益的临床医生则仍能坚持自己的判断。由此看来,临床医生自身的实际经验、专业知识和决策风格成为左右成效的关键。
一位高级研究员在哈佛医学院发表的相关新闻稿中表示,“我们的研究提示了机器与人类间的交互微妙性与复杂性。”
“机器”本身也同样是矛盾的综合体。在简要概述AI从基于规则的模型转向深度学习、再演进至大语言模型的整个过程时,Google Health首席临床官Michael Powell博士警告称“现实世界混沌杂乱,技术细节往往决定一切。如果将不同类型的AI方案混为一谈,很可能无法实现理想的有效性或者安全性。”
但他同时补充称,“这也带来了令人难以置信的机遇。我们知道未来一定会朝着这个方向发展,只是不确定这个未来是10年之后还是100年后。”
好文章,需要你的鼓励
OpenAI在最新博客中首次承认,其AI安全防护在长时间对话中可能失效。该公司指出,相比短对话,长对话中的安全训练机制可能会退化,用户更容易通过改变措辞或分散话题来绕过检测。这一问题不仅影响OpenAI,也是所有大语言模型面临的技术挑战。目前OpenAI正在研究加强长对话中的安全防护措施。
北航团队推出VoxHammer技术,实现3D模型的精确局部编辑,如同3D版Photoshop。该方法直接在3D空间操作,通过逆向追踪和特征替换确保编辑精度,在保持未修改区域完全一致的同时实现高质量局部修改。研究还创建了Edit3D-Bench评估数据集,为3D编辑领域建立新标准,展现出在游戏开发、影视制作等领域的巨大应用潜力。
谷歌宣布计划到2026年底在弗吉尼亚州投资90亿美元,重点发展云计算和AI基础设施。投资包括在里士满南部切斯特菲尔德县建设新数据中心,扩建现有设施,并为当地居民提供教育和职业发展项目。弗吉尼亚州长表示这项投资是对该州AI经济领导地位的有力认可。此次投资是谷歌北美扩张战略的一部分。
宾夕法尼亚大学研究团队开发出PIXIE系统,这是首个能够仅通过视觉就快速准确预测三维物体完整物理属性的AI系统。该技术将传统需要数小时的物理参数预测缩短至2秒,准确率提升高达4.39倍,并能零样本泛化到真实场景。研究团队还构建了包含1624个标注物体的PIXIEVERSE数据集,为相关技术发展奠定了重要基础,在游戏开发、机器人控制等领域具有广阔应用前景。