AWS首席执行官Matt Garman表示:“人们可能喜欢这样说:‘你有其他合作伙伴,他们有自己的芯片,你怎么可能做自己的芯片呢?’事实证明,客户喜欢选择。”
亚马逊网络服务公司(AWS)首席执行官Matt Garman看好公司在自制硅芯片领域的前景,因为 AWS计划凭借其庞大的基础设施布局,以其“控制”整个流程的独特能力,在半导体行业“疯狂优化”。
Garman在周一举行的高盛社区与技术会议上表示:“人们喜欢这样一种说法:‘你有其他合作伙伴,他们有自己的芯片,你怎么可能做自己的芯片呢?’事实证明,客户喜欢选择。”
拥有自己的芯片组可以从多方面帮助AWS客户——从提高性能到降低碳足迹,例如新的 Graviton4 处理器。
早在2006年就进入AWS的Garman表示:“Graviton4绝对优于其他最好的x86处理器,而价格却低20%。因此,我们的许多客户在使用Graviton的过程中,性能价格提高了40%至50%,同时还降低了能耗,改善了碳足迹。”“这是因为我们控制了整个过程。”
Garman表示:“我们制造这些处理器不是为了在通用环境中运行。它们将完全运行在我们的服务器中,完全运行在我们的数据中心中,完全使用我们的网络堆栈,因此我们可以为我们的客户进行优化。”“我们可以围绕这一点进行疯狂的优化,而且我们有一支非常优秀的团队正在制造这些芯片。”
Garman表示,AWS 最初决定在内部构建定制芯片,是为了通过Nitro 支持其虚拟化技术,并能够决定客户的成本。Garman表示:“这意味着我们不必从第三方购买这些芯片,从而降低了成本。”
AWS 是运行英伟达、英特尔和 AMD处理器的最佳场所
这家总部位于西雅图的云计算巨头十多年来一直致力于针对云计算和存储密集型工作负载设计优化的定制芯片。大约五年前,Garman表示,AWS将注意力转向了创建AI处理器,如AWS Inferentia机器学习芯片和用于训练深度学习模型的Trainium ML处理器。
Garman表示:“我们认为,在一些用例中,我们自己的定制处理器可以帮助客户节省成本。”
不过,Garman指出,AWS正在与英特尔、AMD和英伟达等全球最具创新力和规模最大的芯片制造商合作。
AWS 首席执行官表示:“我们坚信,AWS 绝对是运行英特尔、AMD 和英伟达处理器的最佳场所,而且我们认为,我们还可以通过提供自己的处理器来提供一些差异化功能。”
Garman特别强调,英伟达是AWS的全明星处理器供应商,双方建立了超级紧密的合作伙伴关系。他表示:“我们正在超级紧密地合作,为他们构建一个巨大的人工智能基础设施来构建他们自己的模型,并在AWS内部运行他们自己的测试用例。”“因为他们意识到,我们拥有最好的运行环境和最佳性能,可以运行他们自己的服务器。因此,我们之间有着很好的合作关系。”
并非所有的工作负载都更适合在AWS上运行
Garman明确表示,AWS将继续投资于自己的硅芯片创新,并与其他市场领导者建立密切的市场推广和集成合作关系。
Garman表示:“并非所有的工作负载都能在我们自己的处理器上更好地运行,但我们非常看好这方面的机会。Trainium是我们最新推出的芯片,它非常侧重于这些人工智能模型的大规模训练集群。”
AWS计划在今年年底前推出新的 Trainium2 处理器。
Garman表示:“我们对这个平台感到无比兴奋。我们认为,我们有机会在提高性能的同时,积极为客户降低成本。”“在很长一段时间内,客户将有多种处理器可供选择,我们认为更多的选择对客户来说更好。”
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。