谷歌云加大与 Ginkgo Bioworks 的合作,两家公司日前推出了两项新产品。第一项是推出一个蛋白质大语言模型,使业界的组织和公司能够利用 Ginkgo 的专有见解和数据加快药物发现过程。第二项是生物技术公司 Ginkgo 将推出一个模型应用程序接口(API),帮助机器学习工程师和科学家获取生物学人工智能模型。
谷歌云战略产业副总裁 Chris Sakalosky 和 Ginkgo 人工智能总经理 Ankit Gupta在接受记者采访时讨论了这一激动人心的更新。Gupta 表示,生物学在很大程度上已经从一门纯物理学科转变为一门计算学科。那些能够理解、利用并从大量数据中提取有意义见解的方法和手段的人将最终取得成功。这正是 Ginkgo 生态系统的强大之处,因为 Ginkgo 生态系统提供了简化工程所需的计算工具。
Sakalosky 分享了他第一次与 Ginkgo 生物工程公司创始人 Jason Kelly见面时的见解,并讨论了 DNA本质上可以被视为一种语言和代码。如果创新者可以训练人工智能理解对话、口语和计算机代码,那么人工智能就没有理由不能以同样的方式理解和处理 DNA。这正是这个蓬勃发展领域的关键所在。
新的蛋白质大语言模型背后的前景令人振奋,因为该模型是在谷歌云Vertex人工智能平台上构建的,其训练基于 Ginkgo 的专有数据模型。该模型将使研究人员和企业能够快速理解并利用自己的数据,进而为药物发现带来巨大的好处。此外,Ginkgo 公司提供的新应用程序接口可以访问在蛋白质和 DNA 数据基础上训练的复杂模型。第一个模型是 ginkgo-AA-0-650m,是“一个基于超过20亿个Ginkgo专有蛋白质序列训练的大模型”。
为什么这些都很重要?
生物学、药物研发、人工智能和先进工程学之间的融合从未像现在这样紧密,原因是这些垂直领域之间存在大量相互促进的机会。这就是为什么各家公司都在迅速增加在这一领域的投资,竞争也非常激烈。以 Meta 的 ESM 宏基因组图谱为例,该项目旨在“将数据集中的每个蛋白质表示为一个单独的点,并在放大或悬停时显示实际的蛋白质结构”。
尽管该项目据报已经暂停,但截至2023年3月,该模型的可用蛋白质结构已接近7.72亿个。同样,Alphabet 旗下的 Isomorphic Labs 与 Google DeepMind合作,开发了业界领先的蛋白质模型 AlphaFold。其最新版本 AlphaFold 3 声称“与现有预测方法相比至少提高了50%”。
一项发表在《生物信息学前沿》期刊的研究强调了在蛋白质生物学和工程学中使用大语言模型的巨大潜力:“建模能力在不断增强,预计将解决医学和分子生物学中的一系列复杂问题……通过利用嵌入在深度神经模型参数中的‘联结知识’。”
尽管在这个领域还有大量工作要做,各项工作才刚刚开始,但这项技术为生物科学与人工智能的结合提供了一个令人期待的前景。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。