IBM和NASA的研究人员本周发布了一个开源的人工智能气候模型,该模型旨在准确预测天气模式,同时,与传统基于物理的模拟相比,消耗的计算资源更少。
在美国能源部橡树岭国家实验室(Oak Ridge National Laboratory)的帮助下,作为IBM和NASA合作的一部分,他们联合开发了一个23亿参数的基础模型,命名为Prithvi WxC。该模型根据 NASA 第二版Modern-Era Retrospective Analysis for Research and Applications(MERRA-2)数据集提供的 40 年观测数据训练而成。
研究人员表示,尽管该模型很小,但它仍然能够使用仅包含原始数据5%的随机样本准确生成全球地表温度。他们还认为,该模型特别适合模拟飓风和大气河的行为。不过,该模型的真正优势可能在于其灵活性。
并非只有IBM 和 NASA在尝试用人工智能模型进行天气和气候预测。例如,谷歌的研究人员详细介绍了一种通过机器学习增强现有物理模型来提高预测准确性的新方法。与此同时,英伟达也在努力扩展其地球-2(Earth-2)气候模型的功能。
IBM和NASA这一成果的与众不同之处在于,Prithvi WxC是一个基础模型,这意味着它可以应用于从短期天气预报到长期气候预测等各种用例。
IBM 欧洲研究院院长Juan Bernabe-Moreno在本周的一份声明中表示:“在这一领域出现了一些大型人工智能模型,它们专注于固定的数据集和单一用例——主要是进行预测。我们设计的天气和气候基础模型超越了这种限制,可以根据不同的输入信息和用途对其进行调整。”
为了支持在Prithvi WxC基础上创建新的气候模型,IBM和NASA在Hugging Face上发布Prithvi WxC的同时,还发布了一对微调模型,这两个微调模型专为气候和天气降尺度以及重力波参数化而设计。
如果你对天气降尺度不熟悉,它指的是从大模型中获取低分辨率输入信息,如温度、降水或风速,并利用统计或动态概率生成更高分辨率的预测。另一方面,重力波是一种影响各种大气过程的现象,包括云的形成,甚至飞机湍流。
无论是缩短恶劣天气的预警时间,还是改善全球气候模拟,我们的目标是让全球的研究人员能够利用这些模型,并能根据他们的特殊需要进行调整。
NASA地球科学部主任Karen St Germain在一份声明中表示:“NASA的基础模型将帮助我们开发出一种工具,人们可以用它来预测天气、季节和气候,为如何准备、应对和减轻影响提供决策依据。”
由于 Prithvi WxC 非常小,因此可能根本不需要那么多算力,至少与那些为Copilot或 Gemini 等人工智能聊天机器人提供支持的大型语言模型相比不需要那么多算力。论文称,该模型是使用一个由 64 台 Nvidia A100 组成的相对较小的集群从头开始训练的。
从理论上讲,对模型进行微调所需的时间应该比训练模型少得多,这为不同的气候中心使用该模型提供了便利,许多气候中心已经在用GPU分区升级它们的超级计算集群。
据 IBM 称,加拿大政府是首批使用该模型的机构之一,它已开始调整该模型,以纳入更多的天气预报用例。特别是负责该项目的加拿大环境与气候变化部(ECCC),正寻求通过将实时雷达数据输入模型,以期将模型用于极短期降水预报。加拿大环境和气候变化部还在进行降尺度试验,以生成低至千米尺度的预报。
好文章,需要你的鼓励
Anthropic发布SCONE-bench智能合约漏洞利用基准测试,评估AI代理发现和利用区块链智能合约缺陷的能力。研究显示Claude Opus 4.5等模型可从漏洞中获得460万美元收益。测试2849个合约仅需3476美元成本,发现两个零日漏洞并创造3694美元利润。研究表明AI代理利用安全漏洞的能力快速提升,每1.3个月翻倍增长,强调需要主动采用AI防御技术应对AI攻击威胁。
NVIDIA联合多所高校开发的SpaceTools系统通过双重交互强化学习方法,让AI学会协调使用多种视觉工具进行复杂空间推理。该系统在空间理解基准测试中达到最先进性能,并在真实机器人操作中实现86%成功率,代表了AI从单一功能向工具协调专家的重要转变,为未来更智能实用的AI助手奠定基础。
Spotify年度总结功能回归,在去年AI播客功能遭遇批评后,今年重新专注于用户数据深度分析。新版本引入近十项新功能,包括首个实时多人互动体验"Wrapped Party",最多可邀请9位好友比较听歌数据。此外还新增热门歌曲播放次数显示、互动歌曲测验、听歌年龄分析和听歌俱乐部等功能,让年度总结更具互动性和个性化体验。
这项研究解决了现代智能机器人面临的"行动不稳定"问题,开发出名为TACO的决策优化系统。该系统让机器人在执行任务前生成多个候选方案,然后通过伪计数估计器选择最可靠的行动,就像为机器人配备智能顾问。实验显示,真实环境中机器人成功率平均提升16%,且系统可即插即用无需重新训练,为机器人智能化发展提供了新思路。