IBM 的一项研究发现,大多数保险行业的领导者都认为,生成式人工智能对于跟上竞争对手步伐至关重要。然而,只有四分之一的客户愿意使用这项技术。
这项研究基于对 1000 名保险行业高管和 4700 名保险客户的调查。虽然受访的CEO对生成式人工智能是风险还是机会的意见不一,但 77% 的受访者表示,生成式人工智能对于竞争是必要的。
客户的反应却并不热烈,只有 26% 的受访者表示他们相信人工智能能够提供准确可靠的建议。
毫不奇怪,IBM(拥有一系列人工智能产品而且非常乐意向客户销售这些人工智能产品)认为,解决方案包括实施一种受到严格管理且符合道德标准的人工智能,以应对信任问题,并“利用人工智能连接底层风险数据,解决保险公司和金融服务提供商长期存在的技术债务问题”。
或者,俗称蓝色巨人的 IBM 应该简单地听听客户的意见。根据 IBM 自己的数据,只有 29% 的客户对生成式人工智能代理提供的服务感到满意。
根据这项研究,预计在2023年至2025年间,生成式人工智能的投资将增长超过300%,企业将从技术试点转向实施。包括微软在内的IBM的竞争对手已经对这一发展下注颇丰,尽管分析师和交易员暗示人工智能泡沫有可能在不久的将来破裂。
Salesforce 的另一项研究显示,对数据和安全的担忧使得企业有些束手束脚,只有 11% 的受访首席信息官表示已经全面实施了人工智能技术。
即使实施了一些人工智能项目,这些项目的回报也可能远远低于过度兴奋的高管们的期望。这完全取决于人工智能技术的使用方式。例如,一些大型企业出于安全和管理方面的考虑,已经暂缓了微软 Copilot 等产品的使用,并不是因为 Copilot 本身的问题,而是企业意识到在允许 Copilot 爬取企业数据之前需要正确配置访问权限。
IBM 的调查结果和得出的结论表明,人工智能行业有些不接地气,令人担忧。客户不想与生成式人工智能代理打交道。那么,与其试图用更多的人工智能来解决问题这个问题,倒不如考虑一下生成式人工智能适合哪些场合不适合哪些场合。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。