自去年宣布推出Copilot Studio以来,微软表示该工具已在多个业务部门让效率显著提升。从下个月开始,客户将可以对这一说法进行测试。
该服务提供了一个无代码风格的界面,用于构建特定任务的人工智能代理,以实现员工工作的自动化。
如果你对人工智能代理的概念不熟悉,那么它指的是结合使用大型语言或视觉模型(有时不止一个)与传统自动化框架,无需人工交互即可主动处理信息(例如销售线索)。
尽管Copilot Studio可用于构建自定义代理,自动执行各种任务,微软在Dynamics 365 产品中提供了十个现成的代理,覆盖了从销售和客户服务到财务和供应链管理的方方面面。
微软表示其中得供应链代理可以“通过自主跟踪供应商绩效、检测延迟并做出相应响应,最大限度地减少代价高昂的中断”,并补充表示,它将把团队从监控和救火中解放出来。
当然,这些服务旨在插入客户现有的Microsoft 365服务,扩展他们的知识库,这可能是通过一种名为检索增强生成(RAG)的技术实现的——我们在这里对这一概念进行了深入探讨。
从长远来看,许多业内人士都认为这项技术将有助于实现整个部门的自动化。不过,就目前而言,微软的雄心似乎更低调,他们将这一服务定位为提高效率的驱动力,帮助现有员工完成更多工作或专注于价值更高的任务。
微软表示,霍尼韦尔使用 Copilot 提高了生产率,相当于增加了187名全职员工,这不禁让人怀疑,这些工具的真正目的是提高工人的生产率,还是推动裁员。
这正是 Klarna正在做的事情,但这家金融科技公司并没有让人工智能发出 “解雇通知书”,而是将其代理作为不补充员工离职后造成的空缺的理由。
微软称,在自己的测试中,至少有一个销售团队使用Copilot后,每个销售的收入提高了9.4%,成交量增加了20%。同时,这家软件巨头还表示,帮助人工智能人力资源助理现在将回答问题的准确率提高了42%。
当然,我们建议对这些说法持谨慎态度。百分比并不总是像看起来那么令人印象深刻,尤其是当你不知道基数是多少的时候。如果人力资源助理只有四分之三的时间能正确回答问题,那么准确率提高42%就已经很了不起了。但是,如果人力资源助理十次中已经有九次回答准确,那么提高的幅度就小得多了。
虽然微软表示这些代理提供了很多好处,但企业是否真的会让这些代理自己做出决定,还是只会让这些代理在已经需要团队关注的各种警报中插上一脚,还有待观察。当然,我们有足够的理由相信会是后者。
本月早些时候,Redwood Research公司首席执行官Buck Shlegeris与《The Register》杂志分享了故事:一个人工智能代理扫描他的网络、识别计算机并与之连接,结果却出了点差错,开始向机器推送更新,并很快就搞砸了。
需要说明的是,这个特殊的代理是用Python定制的,并使用Anthropic 的 Claude LLM 作为后台。因此,也许微软的Copilot Studio将内置更好的防护栏,以防止生产中出现此类事件。
好文章,需要你的鼓励
瑞士政府正式发布了自主研发的人工智能模型,该模型完全基于公共数据进行训练。这一举措标志着瑞士在AI技术自主化方面迈出重要一步,旨在减少对外国AI技术的依赖,同时确保数据安全和隐私保护。该模型的推出体现了瑞士对发展本土AI能力的战略重视。
ByteDance研究团队提出TiKMiX方法,通过引入"组影响力"概念动态调整AI训练数据配比,解决传统静态配方导致的训练效率低下问题。该方法能根据模型不同训练阶段的数据偏好实时调整,仅用传统方法20%的计算资源就实现更优性能,在多项测试中平均提升2%效果,为大模型训练提供了更智能高效的解决方案。
安克旗下智能家居品牌Eufy发布了最新款安防摄像头产品,该设备采用先进的全景监控技术,能够实现360度无死角覆盖,同时监控多个区域。这款摄像头配备了高清成像系统和智能识别功能,可为用户提供更全面的家庭或办公场所安全保护,标志着智能安防设备在监控范围和效率方面的重要技术突破。
美团研究团队推出突破性GUI操作AI系统UItron,能够像人类一样理解屏幕内容并自动执行复杂操作任务。该系统采用三段式训练方法,在多项标准测试中表现卓越,特别是在中文应用场景下达到54.1%的任务成功率,显著超越其他同类系统。研究团队收集了超过一百万步中文应用操作数据,为GUI代理在中文环境的实际应用奠定了基础。