自去年宣布推出Copilot Studio以来,微软表示该工具已在多个业务部门让效率显著提升。从下个月开始,客户将可以对这一说法进行测试。
该服务提供了一个无代码风格的界面,用于构建特定任务的人工智能代理,以实现员工工作的自动化。
如果你对人工智能代理的概念不熟悉,那么它指的是结合使用大型语言或视觉模型(有时不止一个)与传统自动化框架,无需人工交互即可主动处理信息(例如销售线索)。
尽管Copilot Studio可用于构建自定义代理,自动执行各种任务,微软在Dynamics 365 产品中提供了十个现成的代理,覆盖了从销售和客户服务到财务和供应链管理的方方面面。
微软表示其中得供应链代理可以“通过自主跟踪供应商绩效、检测延迟并做出相应响应,最大限度地减少代价高昂的中断”,并补充表示,它将把团队从监控和救火中解放出来。
当然,这些服务旨在插入客户现有的Microsoft 365服务,扩展他们的知识库,这可能是通过一种名为检索增强生成(RAG)的技术实现的——我们在这里对这一概念进行了深入探讨。
从长远来看,许多业内人士都认为这项技术将有助于实现整个部门的自动化。不过,就目前而言,微软的雄心似乎更低调,他们将这一服务定位为提高效率的驱动力,帮助现有员工完成更多工作或专注于价值更高的任务。
微软表示,霍尼韦尔使用 Copilot 提高了生产率,相当于增加了187名全职员工,这不禁让人怀疑,这些工具的真正目的是提高工人的生产率,还是推动裁员。
这正是 Klarna正在做的事情,但这家金融科技公司并没有让人工智能发出 “解雇通知书”,而是将其代理作为不补充员工离职后造成的空缺的理由。
微软称,在自己的测试中,至少有一个销售团队使用Copilot后,每个销售的收入提高了9.4%,成交量增加了20%。同时,这家软件巨头还表示,帮助人工智能人力资源助理现在将回答问题的准确率提高了42%。
当然,我们建议对这些说法持谨慎态度。百分比并不总是像看起来那么令人印象深刻,尤其是当你不知道基数是多少的时候。如果人力资源助理只有四分之三的时间能正确回答问题,那么准确率提高42%就已经很了不起了。但是,如果人力资源助理十次中已经有九次回答准确,那么提高的幅度就小得多了。
虽然微软表示这些代理提供了很多好处,但企业是否真的会让这些代理自己做出决定,还是只会让这些代理在已经需要团队关注的各种警报中插上一脚,还有待观察。当然,我们有足够的理由相信会是后者。
本月早些时候,Redwood Research公司首席执行官Buck Shlegeris与《The Register》杂志分享了故事:一个人工智能代理扫描他的网络、识别计算机并与之连接,结果却出了点差错,开始向机器推送更新,并很快就搞砸了。
需要说明的是,这个特殊的代理是用Python定制的,并使用Anthropic 的 Claude LLM 作为后台。因此,也许微软的Copilot Studio将内置更好的防护栏,以防止生产中出现此类事件。
好文章,需要你的鼓励
随着员工自发使用生成式AI工具,CIO面临影子AI的挑战。报告显示43%的员工在个人设备上使用AI应用处理工作,25%在工作中使用未经批准的AI工具。专家建议通过六项策略管理影子AI:建立明确规则框架、持续监控和清单跟踪、加强数据保护和访问控制、明确风险承受度、营造透明信任文化、实施持续的角色化AI培训。目标是支持负责任的创新而非完全禁止。
哈佛、MIT联合研究揭示人类语言理解的神经机制,发现大脑通过"信息出口"将语言从核心系统传递至专业脑区实现深度理解。研究提出浅层与深层理解的区别,为人工智能发展提供重要启示,表明真正智能需要多系统协作而非单一优化。该发现可能改变我们对语言认知的理解。
英国正式推出DaRe2THINK数字平台,旨在简化NHS全科医生参与临床试验的流程。该平台由伯明翰大学和MHRA临床实践研究数据链开发,能够安全传输GP诊所与NHS试验研究人员之间的健康数据,减少医生的管理负担。平台利用NHS现有健康信息,安全筛查来自450多家诊所的1300万患者记录,并使用移动消息系统保持试验对象参与度,为传统上无法参与的人群开辟了研究机会。
腾讯混元等团队开发出革命性的AI视频生成自我评判系统PAVRM和训练方法PRFL,让AI能在创作过程中实时评估和改进视频质量,无需等到完成才反馈。该技术使视频动态表现提升56%,人体结构准确性提升21.5%,训练效率提升1.4倍,为AI视频生成质量带来质的飞跃。