基于AI的智能体当下可谓风头正劲。最近几个月来,这个话题也已渗透到不少技术供应商的宣传和营销当中,包括Salesforce、Microsoft、ServiceNow、SAP、亚马逊云科技以及谷歌。从多方面来讲,人们对AI智能体的关注有其道理:智能体代表着生成式AI的下一个发展阶段,有望进一步提高AI的自主性水平。智能体不仅可以像聊天机器人那样回答问题,还能接受人类甚至是其他智能体委托给它们的任务。而且与AI领域的其他成果一样,智能体同样保持着迅猛的发展速度。
短短两个月前,关于智能体的新闻和产品公告还主要集中在应用程序内等传统场景之下。这类智能体的作用是在平台环境下实现个体的生产力与任务自动化。例如,可以设计一个定期扫描多份文档、总结其中信息并向最终用户推荐相应操作的个人生产力代理。以Salesforce为例,这可能意味着其产品会每季度扫描潜在客户渠道,观察是否存在新的数字营销机会并提供策略建议。这些个人生产力智能体将为希望快速完成更多工作的最终用户带来巨大助益。
虽然个人生产力智能体作用不小,但影响力或者说想象空间却相当有限。首先需要承认,这些部署在应用平台内的个人生产力智能体其实很强,能够提升现有技术投资来展示智能体的整体潜力,而且会随着时间推移而加深用户与平台之间的联系。然而,真正的业务影响力应当让企业看到明确的投资回报并为此加大资源投入,而不只是带来种种“锦上添花”的效果。遗憾的是,我认为个人生产力智能体无法达到这样的地位,具体原因有三。
同样的,个人生产力智能体虽也具有实用性,但生成式AI的生态系统仍需要提供更可量化的商业价值来证明战略投资的合理性。最近一段时间,已经出现了相关的积极势头。UiPath就通过开发企业智能体来匹配其机器人流程自动化解决方案,从而实现更为高效的业务流程。通过采用不同的治理和智能体开发方法,UiPath在构建跨企业智能体应用方面获得了更大的施展空间。
再来看其他案例。IBM等咨询公司也在重新调整其交付企业系统集成项目的方式,运用自己的企业内智能体开发体系来缩短交付周期并提高项目质量。在研究这些公司及其他致力于企业AI智能体厂商时,我们发现尽管具体技术形式不同,但其实施仍然依赖于过去40年发展而成的完善IT实践。其中的核心原则包括:
再闪重申,我并不是要贬低当前这波个人生产力智能体。它们确实效果不错,而且老实说,它们也是让决策者们适应和了解AI的合理形式。然而,当领导团队决定押注新技术时,我认为门槛还应该再高一些。
好消息是,如今越来越多的云服务商、企业和初创技术供应商都在为此积极努力,此类新型AI智能体也在各种实践场景下得到应用和发挥。总之,面对大好的形势,请各位戒骄戒躁、保持谨慎,毕竟以往因盲目冒进而折戟沉沙的企业级技术已然难计其数。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。