微软公司今天发布了小型语言模型 Phi-4 的代码,这个模型能够生成文本并解决数学问题。
微软上个月首次详细介绍了这个模型。最初,Phi-4 只能通过微软的 Azure Foundry 人工智能开发服务访问。现在,该模型可以在 Hugging Face(一个流行的开源 AI 项目托管网站)上下载。
Phi-4 是微软在 2023 年推出的小型语言模型系列的第四代产品。它拥有 140 亿参数,这些配置设置决定了神经网络如何处理数据。微软研究人员使用 1,920 个英伟达 H100 图形处理器组成的集群,用了 21 天时间对其进行训练。
该模型基于业界标准的 Transformer 架构,这也是大多数大语言模型的基础架构。当接收到用户提示时,Transformer 模型会将输入分解为单个词,并通过分析周围的文本来确定每个词的含义。此外,它们会优先处理被认为最相关的上下文部分。
Phi-4 采用了所谓的仅解码器型 Transformer 架构。标准的 Transformer 模型会分析单词前后的文本来确定其含义,而仅解码器模型只关注单词之前的文本,这减少了需要处理的数据量,从而降低了推理成本。
在一篇研究论文中,微软详细介绍了使用两种后训练优化技术来提升 Phi-4 的输出质量。这些方法被称为直接偏好优化和监督微调。两种方法都涉及向语言模型提供示例,说明它应该如何生成提示响应。
在内部评估中,微软将 Phi-4 与参数量是其五倍的 Llama 3.3 70B 进行了比较。公司表示,Phi-4 在流行的 GPQA 和 MATH 基准测试中表现更好。这两个测试数据集分别包含科学问题和数学问题。
Phi-4 加入了过去一年主要科技公司开源的小型语言模型不断增长的行列。
去年二月,谷歌推出了一系列名为 Gemma 的小型语言模型。该系列算法的参数量在 20 亿到 270 亿之间。据谷歌称,270 亿参数版本的性能可以超过规模是其两倍以上的模型。
最近,Meta 发布了两个参数量不到 50 亿的 Llama 3.2 模型。随后,该公司开源了这些模型的更高效版本,这些版本采用了称为量化的机器学习技术。该技术通过压缩神经网络摄入的数据来减少处理所需的硬件资源。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。