微软公司今天发布了小型语言模型 Phi-4 的代码,这个模型能够生成文本并解决数学问题。
微软上个月首次详细介绍了这个模型。最初,Phi-4 只能通过微软的 Azure Foundry 人工智能开发服务访问。现在,该模型可以在 Hugging Face(一个流行的开源 AI 项目托管网站)上下载。
Phi-4 是微软在 2023 年推出的小型语言模型系列的第四代产品。它拥有 140 亿参数,这些配置设置决定了神经网络如何处理数据。微软研究人员使用 1,920 个英伟达 H100 图形处理器组成的集群,用了 21 天时间对其进行训练。
该模型基于业界标准的 Transformer 架构,这也是大多数大语言模型的基础架构。当接收到用户提示时,Transformer 模型会将输入分解为单个词,并通过分析周围的文本来确定每个词的含义。此外,它们会优先处理被认为最相关的上下文部分。
Phi-4 采用了所谓的仅解码器型 Transformer 架构。标准的 Transformer 模型会分析单词前后的文本来确定其含义,而仅解码器模型只关注单词之前的文本,这减少了需要处理的数据量,从而降低了推理成本。
在一篇研究论文中,微软详细介绍了使用两种后训练优化技术来提升 Phi-4 的输出质量。这些方法被称为直接偏好优化和监督微调。两种方法都涉及向语言模型提供示例,说明它应该如何生成提示响应。
在内部评估中,微软将 Phi-4 与参数量是其五倍的 Llama 3.3 70B 进行了比较。公司表示,Phi-4 在流行的 GPQA 和 MATH 基准测试中表现更好。这两个测试数据集分别包含科学问题和数学问题。
Phi-4 加入了过去一年主要科技公司开源的小型语言模型不断增长的行列。
去年二月,谷歌推出了一系列名为 Gemma 的小型语言模型。该系列算法的参数量在 20 亿到 270 亿之间。据谷歌称,270 亿参数版本的性能可以超过规模是其两倍以上的模型。
最近,Meta 发布了两个参数量不到 50 亿的 Llama 3.2 模型。随后,该公司开源了这些模型的更高效版本,这些版本采用了称为量化的机器学习技术。该技术通过压缩神经网络摄入的数据来减少处理所需的硬件资源。
好文章,需要你的鼓励
能源初创公司联邦聚变系统宣布与谷歌DeepMind合作,利用AI技术优化其即将建成的Sparc反应堆运行。双方将使用DeepMind的Torax软件模拟反应堆内等离子体,并结合AI模型帮助实现聚变发电。聚变发电有望提供零排放的大量电力,AI公司看好聚变作为数据中心电源。谷歌此前已投资多家聚变公司,并计划从CFS首个商业电站采购200兆瓦电力。
上海AI实验室联合多家顶尖机构开发出全球首个科学推理大模型SciReasoner,该模型在2060亿科学数据上训练,支持103个科学任务,能够像科学家一样进行逻辑推理并展示思考过程。它实现了化学、生物学、材料科学等多领域知识整合,在分子设计、性质预测、文献分析等方面表现出色,为科学研究提供了强大的AI助手工具。
Omdia最新研究显示,以AWS、微软和谷歌云为首的超大规模云市场企业软件销售额预计将从2024年的300亿美元激增至2030年的1630亿美元。这一增长反映了企业对市场采购模式的日益采用和智能AI销售的急剧上升。2025-2030年复合年增长率预计达29.1%。基础设施软件、DevOps和商业应用将占总支出的63%,而智能AI和网络安全成为高增长领域。
南洋理工大学研究团队开发出SHINE方法,这是一种无需额外训练就能实现高质量图像合成的新技术。该方法通过巧妙引导现有AI模型的潜能,能够在复杂光影条件下完美合成图像,包括准确的阴影生成和水面倒影效果。研究团队还创建了ComplexCompo基准测试集,验证了SHINE在各种挑战性场景中的卓越性能,为图像编辑技术的发展开辟了新方向。