微软公司今天发布了小型语言模型 Phi-4 的代码,这个模型能够生成文本并解决数学问题。
微软上个月首次详细介绍了这个模型。最初,Phi-4 只能通过微软的 Azure Foundry 人工智能开发服务访问。现在,该模型可以在 Hugging Face(一个流行的开源 AI 项目托管网站)上下载。
Phi-4 是微软在 2023 年推出的小型语言模型系列的第四代产品。它拥有 140 亿参数,这些配置设置决定了神经网络如何处理数据。微软研究人员使用 1,920 个英伟达 H100 图形处理器组成的集群,用了 21 天时间对其进行训练。
该模型基于业界标准的 Transformer 架构,这也是大多数大语言模型的基础架构。当接收到用户提示时,Transformer 模型会将输入分解为单个词,并通过分析周围的文本来确定每个词的含义。此外,它们会优先处理被认为最相关的上下文部分。
Phi-4 采用了所谓的仅解码器型 Transformer 架构。标准的 Transformer 模型会分析单词前后的文本来确定其含义,而仅解码器模型只关注单词之前的文本,这减少了需要处理的数据量,从而降低了推理成本。
在一篇研究论文中,微软详细介绍了使用两种后训练优化技术来提升 Phi-4 的输出质量。这些方法被称为直接偏好优化和监督微调。两种方法都涉及向语言模型提供示例,说明它应该如何生成提示响应。
在内部评估中,微软将 Phi-4 与参数量是其五倍的 Llama 3.3 70B 进行了比较。公司表示,Phi-4 在流行的 GPQA 和 MATH 基准测试中表现更好。这两个测试数据集分别包含科学问题和数学问题。
Phi-4 加入了过去一年主要科技公司开源的小型语言模型不断增长的行列。
去年二月,谷歌推出了一系列名为 Gemma 的小型语言模型。该系列算法的参数量在 20 亿到 270 亿之间。据谷歌称,270 亿参数版本的性能可以超过规模是其两倍以上的模型。
最近,Meta 发布了两个参数量不到 50 亿的 Llama 3.2 模型。随后,该公司开源了这些模型的更高效版本,这些版本采用了称为量化的机器学习技术。该技术通过压缩神经网络摄入的数据来减少处理所需的硬件资源。
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。