领先的 API 平台 Postman 近期宣布推出其 AI 代理构建器。这款生成式 AI 工具允许开发者通过无缝集成大语言模型、应用程序接口和工作流来设计、构建、测试和部署智能代理。
AI 代理时代中 API 的重要性
AI 代理正从根本上改变我们与技术交互的方式。这些智能系统能够理解上下文、做出决策并自主执行任务,为用户和组织带来更高的效率和生产力。随着 AI 代理变得越来越复杂,它们对 API 的依赖也在增长。API 作为 AI 代理和外部世界之间的关键链接,使它们能够访问信息、与各种应用程序交互并执行操作。
在 AI 代理时代,API 比以往任何时候都更加重要。Postman 联合创始人兼 CEO Abhinav Asthana 表示:"随着代理的普及,我们可能会看到 API 使用量增加 10-100 倍,使软件系统能够执行越来越复杂的工作流程"。
API 是这些代理的关键构建模块,为它们提供必要的基础设施以:
访问实时信息: AI 代理需要访问动态数据来做出明智的决策。API 使它们能够从各种来源(如天气服务、金融数据库或电子商务平台)获取最新信息。
与应用程序交互: AI 代理可以使用 API 与不同的应用程序交互,实现任务自动化和工作流程简化。例如,代理可以使用 API 安排会议、发送电子邮件或更新 CRM 系统中的记录。
执行操作: API 使 AI 代理能够在现实世界中执行操作。这可能包括控制智能家居设备、进行在线购物,甚至与物理机器人交互。
Postman AI 代理构建器的使用场景
Postman 的 AI 代理构建器在不同领域提供广泛的应用。主要用例包括:
自动化 API 测试: AI 代理可用于自动化 API 测试,减少所需的人工工作并提高测试过程的效率。
开发者入职和培训: AI 代理可以通过提供交互式教程和 API 使用指导来协助新开发者入职。
复杂工作流程编排: AI 代理可用于编排涉及多个 API 和服务的复杂工作流程,实现任务自动化和流程简化。
这些用例展示了 Postman AI 代理构建器的多功能性及其改变开发者与 API 交互和使用方式的潜力。
Postman 与竞争对手的对比
虽然 Postman 是 AI 代理构建器领域的主要参与者,但市场上还有其他工具,每个工具都有其独特的优势和目标受众。一些主要竞争对手包括:
LangChain: 一个旨在构建上下文感知代理的框架,擅长动态、多轮对话。
LlamaIndex: 专注于将大型数据集集成到 AI 工作流程中,增强数据查询和决策使用方式。
CrewAI: 专为多代理协作设计,使 AI 代理能够协同处理复杂任务。
Postman 通过提供一个综合平台来区分自己,该平台在用户友好的环境中结合了 API 开发、LLM 集成和工作流自动化。其对 API 优先开发的关注以及广泛的 Postman API 网络,使其成为希望构建能与更广泛 API 生态系统交互的 AI 代理的开发者的有力选择。
Postman 的 AI 代理构建器代表了 API 优先 AI 开发的一大进步。通过提供统一的平台来构建、测试和部署 AI 代理,Postman 使开发者能够创建利用 API 和 LLM 功能的创新解决方案。该工具旨在简化 API 交互、简化工作流程,并实现能够执行复杂任务的智能代理的创建。
随着 API 经济的蓬勃发展和 AI 代理变得越来越普遍,API 在软件开发中的作用比以往任何时候都更加关键。Postman 的 AI 代理构建器试图通过为开发者提供工具来满足这一需求,帮助他们在这个不断发展的领域中发挥 AI 驱动的 API 解决方案的全部潜力。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。