大多数教练在达到收入目标之前就已经把时间耗尽了。他们忙于准备培训课程、跟进客户和创作内容。为了保持对潜在客户的曝光度,他们不得不早出晚归。他们的教练技能被那些每周占用大量时间的行政工作所掩埋。
但如果正确使用 AI,就能彻底改变教练行业。以下是五个你今天就能搭建的 AI 自动化工作流,它们可以每周为你节省数小时时间,帮助你在不筋疲力尽的情况下发展教练业务。
教练们浪费时间:AI 解决方案可以阻止这种情况发生
你成为教练是为了帮助他人转变,而不是为了应付收件箱或在课程前翻找客户笔记。但如果放任不管,教练工作的行政方面会占据你的整天时间。
与其使用互不相连的系统或手动完成所有工作:不如实现任务自动化。
许多人认为自动化意味着需要雇佣团队或学习编程。这是错误的。合适的自动化系统设置简单,能在一夜之间改变你的业务。无需技术技能,只需要一些能在你睡觉时工作的智能系统。
每个教练都应该使用的 5 个自动化系统
1. 创建智能客户入职系统
你可能想不到在新客户管理上浪费了多少时间。设置一个 Zapier 工作流,在有人预约时立即启动。它会自动发送欢迎邮件、入职表格和问卷。当客户填写完表格后,他们的信息会直接进入你的 CRM 系统并在 Google Drive 中创建相应文件夹。
使用 Zapier 将 Calendly 与 Gmail、Typeform 和 Google Drive 连接,这样当新客户预约时,他们会立即收到欢迎邮件,完成入职表格,并将他们的详细信息存储在有组织的文件夹中。
2. 建立会话准备简化工作流
每次会话前,你可能要花 15-20 分钟回顾笔记,试图记起上次进展。创建一个工作流,在每次会话前从你的跟踪系统中提取数据,立即整理最近的进展、行动项目和之前的笔记成简报。
使用 Notion 或 Airtable 存储客户笔记,然后使用 Make (前身为 Integromat) 自动化生成会前总结,并在每次会话前发送到你的邮箱。
3. 设置testimonial收集管道
收集testimonial往往会被排在待办事项的最后。但社会证明对吸引新客户至关重要。创建一个自动化系统,在客户旅程的关键节点发送邮件请求testimonial。
使用 Zapier 在客户达到里程碑时自动发送 Google Form 请求testimonial,然后使用 ChatGPT 将响应总结为有力的、可分享的引用。AI testimonial工具可以分析回复中的关键主题,并为不同的营销渠道格式化内容。
4. 创建内容再利用链
停止从零开始创建内容。录制你的教练课程(经许可),使用 Otter.ai 等 AI 转录工具将其转换为文本。
设置 Make 场景自动提取关键见解,并将它们发送到 Notion 或 Google Doc 中以便轻松重新利用内容。将它们转化为社交媒体帖子、新闻通讯内容和博客文章。
5. 开发客户进度跟踪系统
创建一个系统,自动将来自各种来源的客户数据汇总到仪表板中,让你快速了解每个客户的进展情况。关注警告信号,如错过会话或未完成工作表。
使用 Airtable 跟踪客户进度,然后在 Zapier 中设置自动化,当客户连续两次错过会话或停止完成任务时提醒你。
通过智能自动化改变你的教练业务
这五个自动化系统将为你每周节省数小时时间,无需雇佣团队或学习复杂技术。今天就设置一个系统,看看它如何改变你的工作流程。从现在最能为你节省时间的系统开始。
聪明的教练知道何时该亲自工作,何时该建立能替他们工作的系统。你会先实施哪个自动化系统?
好文章,需要你的鼓励
腾讯今日开源混元MT系列语言模型,专门针对翻译任务进行优化。该系列包含四个模型,其中两个旗舰模型均拥有70亿参数。腾讯使用四个不同数据集进行初始训练,并采用强化学习进行优化。在WMT25基准测试中,混元MT在31个语言对中的30个表现优于谷歌翻译,某些情况下得分高出65%,同时也超越了GPT-4.1和Claude 4 Sonnet等模型。
腾讯ARC实验室推出AudioStory系统,首次实现AI根据复杂指令创作完整长篇音频故事。该系统结合大语言模型的叙事推理能力与音频生成技术,通过交错式推理生成、解耦桥接机制和渐进式训练,能够将复杂指令分解为连续音频场景并保持整体连贯性。在AudioStory-10K基准测试中表现优异,为AI音频创作开辟新方向。
今年是Frontiers Health十周年。在pharmaphorum播客的Frontiers Health限定系列中,网络编辑Nicole Raleigh采访了Startup Health总裁兼联合创始人Unity Stoakes。Stoakes在科技、科学和设计交汇领域深耕30多年,致力于变革全球健康。他认为,Frontiers Health通过精心选择的空间促进有意义的网络建设,利用网络效应推进创新力量,让企业家共同构建并带来改变,从而有益地影响全球人类福祉。
Meta与特拉维夫大学联合研发的VideoJAM技术,通过让AI同时学习外观和运动信息,显著解决了当前视频生成模型中动作不连贯、违反物理定律的核心问题。该技术仅需添加两个线性层就能大幅提升运动质量,在多项测试中超越包括Sora在内的商业模型,为AI视频生成的实用化应用奠定了重要基础。