中国存储软件供应商燕融为 HPC 和 AI 工作负载提供 YRCloudFile 分布式共享文件系统。通过将 KVCache 集成到文件系统中,燕融表示显著提升了 KV 缓存命中率和长上下文处理能力,降低了 AI 推理成本。
YRCloudFile 支持全闪存驱动器和 Nvidia 的 GPUDirect 协议。KVCache 是一种在 AI 模型推理阶段存储中间结果的方式,避免在每个阶段重新计算,从而缩短响应时间。
据了解,YRCloudFile 系统中的 KVCache 可能作为 GPU 服务器集群中的分布式内存层,用于存储经常访问的元数据(即键值对)。
为了验证 YRCloudFile KVCache 的性能,燕融使用公开数据集、行业标准基准测试工具和 NVIDIA GPU 硬件模拟了真实工作负载。结果表明,YRCloudFile KVCache 支持显著更高的并发查询吞吐量,为推理工作负载提供了具体、可量化的价值。
燕融进行了多阶段测试,比较了原生 vLLM 性能与集成 YRCloudFile KVCache 的 vLLM 在不同 token 数量和配置下的表现。
一项测试评估了单个查询在 8,000 至约 30,000 个 token 作为上下文输入时的总响应时间。随着上下文长度增加,使用 KVCache 的 YRCloudFile 在首个 Token 生成时间 (TTFT) 方面实现了 3 倍到超过 13 倍的性能提升。
第二项测试衡量了在 TTFT 值为 2 秒或更短时支持的并发查询数量。结果显示,YRCloudFile KVCache 与原生 vLLM 相比,支持的并发请求数量提高了 8 倍。
第三项测试结果表明,在高并发情况下,YRCloudFile KVCache 在不同上下文长度下实现了超过 4 倍的 TTFT 性能提升。
燕融表示,这些结果展示了"通过分布式存储扩展 GPU 内存如何突破传统计算瓶颈,实现资源利用率的指数级提升"。总的来说,"YRCloudFile KVCache 通过 PB 级缓存扩展将存储资源转化为计算优势,重新定义了 AI 推理的经济性"。
我们认为,YRCloudFile 的 KVCache 与 WEKA 的增强内存网格 (AMG) 有一些相似之处。AMG 是一个软件定义的文件系统扩展,提供了微秒级延迟的 Ex 级缓存容量和每秒数 TB 的带宽,实现接近内存速度的性能。
WEKA 的一篇博客提到,它"将 GPU 内存扩展到 WEKA 数据平台中的 token 仓库,提供接近内存速度的 PB 级持久存储。token 仓库为标记化数据提供持久的、基于 NVMe 的存储,使 AI 系统能够以接近内存的速度存储和检索 token"。
这"使您能够缓存 token 并以微秒级延迟将其传递到 GPU,驱动下一代 AI 工厂所需的大规模、低延迟推理和高效的计算重用"。AMG 的特点是:"在 NVMe 中持久存储标记化数据",而且"token 被存储起来,在推理时从'货架'上取出,而不是针对每个请求持续地按需重新生成"。
AMG "将 GPU 内存扩展为分布式高性能内存结构,提供微秒级延迟和大规模并行 I/O,这对于实时大规模存储和检索 token 至关重要"。
好文章,需要你的鼓励
全新搜索方式出现,字节发布宽度优先搜索基准WideSearch,垫底的竟是DeepSeek
阿里巴巴团队推出DeepPHY,这是首个专门评估AI视觉语言模型物理推理能力的综合平台。通过六个不同难度的物理环境测试,研究发现即使最先进的AI模型在物理推理任务中表现也远低于人类,成功率普遍不足30%。更关键的是,AI模型虽能准确描述物理现象,却无法将描述性知识转化为有效控制行为,暴露了当前AI技术在动态物理环境中的根本缺陷。
GitHub CEO声称AI将承担所有编程工作,但现实中AI编程工具实际上降低了程序员的生产效率。回顾编程语言发展史,从Grace Hopper的高级语言到Java等技术,每次重大突破都曾因资源限制和固有思维遭到质疑,但最终都证明了抽象化的价值。当前AI编程工具面临命名误导、过度炒作和资源限制三重困扰,但随着技术进步,AI将有助于消除思想与结果之间的障碍。
AgiBot团队联合新加坡国立大学等机构开发出Genie Envisioner机器人操作统一平台,首次将视频生成技术应用于机器人控制。该系统通过100万个操作视频学习,让机器人能够预测行动结果并制定策略,在多个复杂任务上表现优异,仅需1小时数据即可适应新平台,为通用机器人智能开辟全新路径。