中国存储软件供应商燕融为 HPC 和 AI 工作负载提供 YRCloudFile 分布式共享文件系统。通过将 KVCache 集成到文件系统中,燕融表示显著提升了 KV 缓存命中率和长上下文处理能力,降低了 AI 推理成本。
YRCloudFile 支持全闪存驱动器和 Nvidia 的 GPUDirect 协议。KVCache 是一种在 AI 模型推理阶段存储中间结果的方式,避免在每个阶段重新计算,从而缩短响应时间。
据了解,YRCloudFile 系统中的 KVCache 可能作为 GPU 服务器集群中的分布式内存层,用于存储经常访问的元数据(即键值对)。
为了验证 YRCloudFile KVCache 的性能,燕融使用公开数据集、行业标准基准测试工具和 NVIDIA GPU 硬件模拟了真实工作负载。结果表明,YRCloudFile KVCache 支持显著更高的并发查询吞吐量,为推理工作负载提供了具体、可量化的价值。
燕融进行了多阶段测试,比较了原生 vLLM 性能与集成 YRCloudFile KVCache 的 vLLM 在不同 token 数量和配置下的表现。
一项测试评估了单个查询在 8,000 至约 30,000 个 token 作为上下文输入时的总响应时间。随着上下文长度增加,使用 KVCache 的 YRCloudFile 在首个 Token 生成时间 (TTFT) 方面实现了 3 倍到超过 13 倍的性能提升。
第二项测试衡量了在 TTFT 值为 2 秒或更短时支持的并发查询数量。结果显示,YRCloudFile KVCache 与原生 vLLM 相比,支持的并发请求数量提高了 8 倍。
第三项测试结果表明,在高并发情况下,YRCloudFile KVCache 在不同上下文长度下实现了超过 4 倍的 TTFT 性能提升。
燕融表示,这些结果展示了"通过分布式存储扩展 GPU 内存如何突破传统计算瓶颈,实现资源利用率的指数级提升"。总的来说,"YRCloudFile KVCache 通过 PB 级缓存扩展将存储资源转化为计算优势,重新定义了 AI 推理的经济性"。
我们认为,YRCloudFile 的 KVCache 与 WEKA 的增强内存网格 (AMG) 有一些相似之处。AMG 是一个软件定义的文件系统扩展,提供了微秒级延迟的 Ex 级缓存容量和每秒数 TB 的带宽,实现接近内存速度的性能。
WEKA 的一篇博客提到,它"将 GPU 内存扩展到 WEKA 数据平台中的 token 仓库,提供接近内存速度的 PB 级持久存储。token 仓库为标记化数据提供持久的、基于 NVMe 的存储,使 AI 系统能够以接近内存的速度存储和检索 token"。
这"使您能够缓存 token 并以微秒级延迟将其传递到 GPU,驱动下一代 AI 工厂所需的大规模、低延迟推理和高效的计算重用"。AMG 的特点是:"在 NVMe 中持久存储标记化数据",而且"token 被存储起来,在推理时从'货架'上取出,而不是针对每个请求持续地按需重新生成"。
AMG "将 GPU 内存扩展为分布式高性能内存结构,提供微秒级延迟和大规模并行 I/O,这对于实时大规模存储和检索 token 至关重要"。
好文章,需要你的鼓励
当超级计算机被压缩进一个比书本还小的盒子里,这画面有多炸裂?想象一下,你桌面上摆着的不是什么花瓶摆件,而是一台能跑200B参数AI推理的"超算怪兽"——这就是我们今天要聊的主角:华硕Ascent GX10。
Adobe研究院与UCLA合作开发的Sparse-LaViDa技术通过创新的"稀疏表示"方法,成功将AI图像生成速度提升一倍。该技术巧妙地让AI只处理必要的图像区域,使用特殊"寄存器令牌"管理其余部分,在文本到图像生成、图像编辑和数学推理等任务中实现显著加速,同时完全保持了输出质量。
香港科技大学团队开发出A4-Agent智能系统,无需训练即可让AI理解物品的可操作性。该系统通过"想象-思考-定位"三步法模仿人类认知过程,在多个测试中超越了需要专门训练的传统方法。这项技术为智能机器人发展提供了新思路,使其能够像人类一样举一反三地处理未见过的新物品和任务。