Apple 于本周一发布了一个开源的容器化框架,用于在 Mac 上创建和运行 Linux 容器镜像。
软件容器将应用程序及其依赖项组合成一个单元,在主机上运行于隔离环境中。由于它们基于符合 OCI 标准的镜像,用户可以借助 Kubernetes 等常用的编排工具在各种服务器环境和数据中心运行它们。
开发者通常选择使用 Mac,因为其硬件稳定且开发环境优秀,但他们可能正在编写运行于 Linux 环境中的服务器端应用或其他应用。对这些开发者而言,创建 Linux 容器让他们既能使用 Mac,又能获得与其代码目标一致的运行环境。
使用 Mac 的开发者目前已有一些创建 Linux 容器的选择,如 Docker、Podman、Orbstack 和 Lima。但至少在过去,Docker 和 Podman 的表现并不十分理想。
借助全新的 Apple 容器化框架,Apple 旨在提供一个开源平台,该平台利用 Swift 编程语言的优势,对 Apple Silicon 芯片进行优化,同时将安全风险降至最低。
与创建一个大型 Linux 虚拟机来承载多个容器不同,Apple 容器化框架借助其配套的容器 CLI 为每个容器创建一个独立的轻量级虚拟机(VM)。
Apple 的文档解释道:“客户端可以为每个容器创建专用 IP 地址,从而免去单独进行端口转发的需求。容器借助优化的 Linux 内核配置、最小化的根文件系统和轻量级 init 系统,实现了亚秒级启动速度。”
这种最小化文件系统有望使 Apple 容器更为安全。通过排除大部分核心工具和动态库,生成的容器减少了攻击面,并且预计所需的维护工作也更少。
据 Apple 介绍,使用其容器工具创建的容器所需内存比完整虚拟机少,同时启动速度可与共享虚拟机相媲美。
这就是其愿景。目前,该框架仍存在一些限制。Apple 设计这一框架时采用了尚未发布的 macOS 26 Tahoe 中的功能,在 macOS 15 Sequoia 上其能力则较为有限。(是的,macOS 的版本从 15 变为 26——命名方式正从版本号转为年份。)此外,对内存气球技术(一种允许虚拟机动态调整内存大小的方法)的支持目前仅实现了部分功能。
但在未来几个月内,Apple 容器化框架或将使使用 Linux 容器的工作变得更加便捷。
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。