Apple 于本周一发布了一个开源的容器化框架,用于在 Mac 上创建和运行 Linux 容器镜像。
软件容器将应用程序及其依赖项组合成一个单元,在主机上运行于隔离环境中。由于它们基于符合 OCI 标准的镜像,用户可以借助 Kubernetes 等常用的编排工具在各种服务器环境和数据中心运行它们。
开发者通常选择使用 Mac,因为其硬件稳定且开发环境优秀,但他们可能正在编写运行于 Linux 环境中的服务器端应用或其他应用。对这些开发者而言,创建 Linux 容器让他们既能使用 Mac,又能获得与其代码目标一致的运行环境。
使用 Mac 的开发者目前已有一些创建 Linux 容器的选择,如 Docker、Podman、Orbstack 和 Lima。但至少在过去,Docker 和 Podman 的表现并不十分理想。
借助全新的 Apple 容器化框架,Apple 旨在提供一个开源平台,该平台利用 Swift 编程语言的优势,对 Apple Silicon 芯片进行优化,同时将安全风险降至最低。
与创建一个大型 Linux 虚拟机来承载多个容器不同,Apple 容器化框架借助其配套的容器 CLI 为每个容器创建一个独立的轻量级虚拟机(VM)。
Apple 的文档解释道:“客户端可以为每个容器创建专用 IP 地址,从而免去单独进行端口转发的需求。容器借助优化的 Linux 内核配置、最小化的根文件系统和轻量级 init 系统,实现了亚秒级启动速度。”
这种最小化文件系统有望使 Apple 容器更为安全。通过排除大部分核心工具和动态库,生成的容器减少了攻击面,并且预计所需的维护工作也更少。
据 Apple 介绍,使用其容器工具创建的容器所需内存比完整虚拟机少,同时启动速度可与共享虚拟机相媲美。
这就是其愿景。目前,该框架仍存在一些限制。Apple 设计这一框架时采用了尚未发布的 macOS 26 Tahoe 中的功能,在 macOS 15 Sequoia 上其能力则较为有限。(是的,macOS 的版本从 15 变为 26——命名方式正从版本号转为年份。)此外,对内存气球技术(一种允许虚拟机动态调整内存大小的方法)的支持目前仅实现了部分功能。
但在未来几个月内,Apple 容器化框架或将使使用 Linux 容器的工作变得更加便捷。
好文章,需要你的鼓励
清华大学团队突破性开发"零样本量化"技术,让AI模型在不接触真实数据的情况下完成高效压缩,性能反超传统方法1.7%,为隐私保护时代的AI部署开辟新路径。
普林斯顿大学研究团队开发出"LLM经济学家"框架,首次让AI学会为虚拟社会制定税收政策。系统包含基于真实人口数据的工人AI和规划者AI两层,通过自然语言交互找到最优经济政策,甚至能模拟民主投票。实验显示AI制定的税收方案接近理论最优解,为AI参与社会治理提供了新路径。
K Prize是由Databricks和Perplexity联合创始人推出的AI编程挑战赛,首轮比赛结果显示,获胜者巴西工程师Eduardo Rocha de Andrade仅答对7.5%的题目就获得5万美元奖金。该测试基于GitHub真实问题,采用定时提交系统防止针对性训练,与SWE-Bench 75%的最高得分形成鲜明对比。创始人承诺向首个在该测试中得分超过90%的开源模型提供100万美元奖励。
南开大学研究团队提出了一种新的3D高斯泼溅重光照方法,通过在高斯原语上直接编码离散化SDF值,避免了传统方法需要额外SDF网络的问题。该方法设计了投影一致性损失来约束离散SDF样本,并采用球形初始化避免局部最优。实验表明,新方法在保持高质量重光照效果的同时,仅需现有方法20%的显存,显著提升了训练和渲染效率。