谷歌今天宣布向其公有云平台上增加ensor Processing Units,这是一款专门为人工智能工作负载提供动力的内部设计的芯片系列。
一个TPU(如图所示)由四个专用集成电路组成,配有64GB的“超高带宽”内存。这一组合单元可以提供高达180 teraflops的性能。今年晚些时候,谷歌计划增加一个集群选项,让云客户将多个TPU聚合成一个“Pod”,速度达到petaflop的范围(是teraflop的1000倍)。
在今天的公告中谷歌并没有分享更多的性能细节。不过,去年谷歌的两位顶级工程师写的一篇博客文章显示,当时内部使用的Pod包括64个TPU,总吞吐为11.5 petaflops。相比之下,世界上功能最强大的超级计算机可以达到93 petaflops,但值得注意的是,谷歌很可能没有使用相同的基准测试方法来测量TPU的速度。
无论哪种方式,这些芯片都是Google云平台的一个重要补充。当谷歌于去年4月首次向全世界展示TPU规格的时候,它透露该芯片至少可以运行某些机器学习工作负载,比现有的芯片快15至30倍。这就包括特别适合用于机器学习模型的GPU。GPU的主要制造商包括Nvidia和AMD公司,这两家公司仍然是当今大多数项目的首选。
因此,谷歌的云客户应该能够更快速地培训和运行他们的人工智能软件。谷歌表示,一个TPU可用于在一天之内实施主流ResNet-50图像分类模型,达到可接受的精确度水平。
谷歌已经创建了几个预先优化的神经网络包,让客户可以将其运行在TPU上,其中包括一个ResNet-50版本,以及用于机器翻译、语言建模和识别图像内物体的模型。企业客户也可以使用谷歌的开源TensorFlow机器学习引擎创建自己的人工智能工作负载。
喜欢使用传统图形卡进行人工智能项目的客户,今天也看到了一项新的功能。谷歌为其Kubernetes Engine服务添加了GPU支持,以允许将机器学习模型打包到软件容器中。后一种技术提供了一个轻量级抽象层,使开发人员能够更轻松地推出更新并跨环境迁移应用。
这个新的TPU价格为每小时每单元6.50美元,而通过Kubernetes Engine租赁的GPU将按谷歌现有的每种支持芯片型号收费。
这种芯片对于各种人工智能任务、特别是对于一些计算机工作负载而言的就绪情况,仍然不明确。Moor Insights&Strategy总裁兼首席分析师Patrick Moorhead表示:“TPU是一个很好的试水方式,但并一定适合于运行生产工作负载。GPU是进行训练的最佳方式。锁定到TPU,意味着被GCP和TensorFlow锁定。”
而且谷歌也不是唯一追求自主开发人工智能芯片的公司。芯片巨头英特尔公司一直在推销其最新用于人工智能工作负载的CPU,以及称为FPGA的定制芯片。
据The Information报道称,亚马逊公司正在开发自己的人工智能芯片,该芯片可以帮助其Echo智能音箱和其他使用其Alexa数字助理的硬件在设备上执行更多处理任务,以便它可以比调用云的响应速度更快。
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。