至顶网软件频道消息: Google希望开发者能够在托管于Google云中的Kubernetes容器中构建更多的应用。
为此,Google今天推出了一系列名为Google Cloud Code的新插件,让使用集成开发环境构建的应用(如IntelliJ和Visual Studio Code)更容易被部署到Kubernetes中。
诸如IntelliJ和Visual Studio Code之类的IDE是用于编写应用代码最流行的工具,Google也坦言不太可能很快就改变这一情况。但使用IDE可能是很麻烦的,因为其设计目的是编写“本地应用”而不是云托管应用,而本地和云环境存在很多差异,这可能导致使用IDE构建云应用的时候会出现各种错误。
Google产品经理Sean McBrean在一篇博客文章中解释说,Cloud Code的目的是要消除这些错误。
McBrean写道:“Cloud Code扩展了VS Code和IntelliJ,将IDE的所有功能和便利性带入了开发云原生Kubernetes应用的过程中。借助Google的命令行容器工具,如Skaffold和Jiband Kubectl,Cloud Code让你在构建项目的时候可以持续提供反馈,将本地编辑-编译-调试这个循环扩展到任何本地或远程Kubernetes环境中。”
McBrean解释说,有很多新概念是需要那些不熟悉Kubernetes的开发者去理解的。Cloud Code通过提供大量Kubernetes部署样本来解决这个问题,这些样本是针对调试、构建和部署应用进行预配置的,让开发者无需担心应用程序的初始设置和配置。
此外,Cloud Code让开发者可以更轻松地将Google的API与他们的应用进行集成,这样他们就可以使用Maps等Google的服务。而且与Cloud DevOps服务(如Cloud Build和Stackdriver)的进一步集成也包含在内。
“例如,一旦你的代码准备好部署,只需提交请求,就会触发Cloud Build自动构建、测试和部署你的应用,”McBrean说。
Constellation Research首席分析师、副总裁Holger Mueller表示:“为了吸引开发者,厂商们要么让变得更加高效,要么让开发者可以使用他们自己喜欢的工具,而Google通过使用面向Google Cloud代码的IntelliJ和VSCode插件同时做到了这两点。”
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。