在今天的一篇博客文章中,与苏黎世公司计算系统生物学小组展开的IBM研究人员Matteo Manica和Joris Cadow指出,癌症是全球第二大死亡原因,2018年新诊断的病例数约为1810万,同年有960万人死于癌症。
由于死亡人数众多,因此开发癌症治疗方法就成为人类最优先考虑的事项之一,IBM团队希望利用自己在人工智能和机器学习方面的专业知识来帮助实现这一目标。IBM最新人工智能项目的想法是试图加速对“这些复杂疾病主要驱动因素和分子机制”的理解。
两位研究人员表示:“我们的目标是深化对癌症的理解,为行业和学术界提供可能有助于推动新疗法的知识。”
第一个开源的工具是PaccMann,这是一个非常严肃项目的缩写,该项目名为“用多模式注意力神经网络预测抗癌复合物敏感性”( Prediction of anticancer compound sensitivity with Multi-modal attention-based neural networks)。
IBM表示,PaccMann旨在为开发癌症治疗药物提辅助。该算法旨在分析化合物并预测哪些化合物具有抗癌能力,以便将这些化合物作为可能的药物进行测试。该倡议可能会对癌症治疗有所帮助,因为开发一种抗癌药物通常要花费数百万美元,更不要说需要数年时间了。
第二个项目是IntERAcT,是“来自vectoR词汇表示的互动网络信息”( Interaction Network infErence from vectoR representATions of words)。
IntERAcT可以自动扫描与癌症有关的科学研究论文,并快速提取和分析其中的数据,以增强对癌症的理解。这很重要,因为每年约有17,000篇关于癌症的论文发表,研究人员无法阅读完每一篇论文。
IBM表示,IntERAcT被用于从“蛋白质 - 蛋白质相互作用”的论文中提取数据,科学家们认为,这种相互作用可能导致了发生癌症的生物过程中断。
IBM表示,INtERAcT的一个显着优势在于能够推断特定疾病背景下的相互作用,将其与健康组织中的正常相互作用进行比较有助于深入了解疾病的机制。
最后,IBM开源了PIMKL项目,即“途径诱导的多核学习”( pathway-induced multiple kernel learning),这种算法可以提取当前分子相互作用知识的数据,以预测癌症的进展情况,以及患者是否可能在治疗成功后再次复发。医生利用这些信息就可以为患者提出量身定制的治疗方案。
Constellation Research分析师Holger Mueller表示,他很高兴看到IBM开源这些算法的举动,“医疗和癌症研究诊断在采用现代技术方面具有巨大优势。这些真正的下一代应用将会对疾病和死亡率产生深远的影响。”
好文章,需要你的鼓励
本文探讨如何使用生成式AI和大语言模型作为倾听者,帮助用户表达内心想法。许多主流AI如ChatGPT、Claude等被设计成用户的"最佳伙伴",或试图提供心理健康建议,但有时用户只想要一个尊重的倾听者。文章提供了有效的提示词技巧,指导AI保持中性、尊重的态度,专注于倾听和理解,而非给出建议或判断。同时提醒用户注意隐私保护和AI的局限性。
北京大学团队开发出WoW世界模型,这是首个真正理解物理规律的AI系统。通过200万机器人互动数据训练,WoW不仅能生成逼真视频,更能理解重力、碰撞等物理定律。其创新的SOPHIA框架让AI具备自我纠错能力,在物理理解测试中达到80.16%准确率。该技术将推动智能机器人、视频制作等领域发展,为通用人工智能奠定重要基础。
人工通用智能和超级人工智能的出现,可能会创造出一种全新的外星智能形态。传统AI基于人类智能模式构建,但AGI和ASI一旦存在,可能会选择创造完全不同于人类认知方式的新型智能。这种外星人工智能既可能带来突破性进展,如找到癌症治愈方法,也可能存在未知风险。目前尚不确定这种新智能形态是否会超越人类智能,以及我们是否应该追求这一可能改变人类命运的技术突破。
香港大学和蚂蚁集团联合推出PromptCoT 2.0,这是一种让AI自动生成高质量训练题目的创新方法。通过"概念-思路-题目"的三步策略,AI能像老师备课一样先构思解题思路再出题,大幅提升了题目质量和训练效果。实验显示该方法在数学竞赛和编程任务上都取得了显著提升,为解决AI训练数据稀缺问题提供了新思路。