至顶网软件与服务频道消息: AWS近日透露了有关即将推出的集成数据中心硬件产品AWS Outposts更多细节。
AWS在11月公布了AWS Outposts,它实际上是一个本地数据中心系统,将成为VMware Cloud on AWS或者原生AWS云环境的扩展,有点类似于微软的Azure Stack产品,后者让企业能够在自己的数据中心运行微软Azure云服务。
有了AWS Outposts,客户就可以选择在本地运行AWS云,这一硬件系统将配备完全托管的、可配置的计算和存储机架,可以连接到亚马逊的公有云。
AWS计算服务副总裁Matt Garman在近日发表的博客文章中表示,该服务将如期在今年年底前上市。
Garman还透露了AWS Outposts最开始在本地运行支持的一些特定服务,并提供了一些用例场景。
AWS Outposts将支持众多用于计算任务的Amazon EC2实例,包括C5、M5、R5、I3en和G4,可以带或者不带存储选项。Garman表示,AWS Outposts还将支持本地的Amazon EBS卷。
同时,上市时支持的云服务包括用于容器化应用的Amazon ECS和Amazon EKS群集,用于数据分析工作负载的Amazon EMR群集,以及用于关系数据库的Amazon RDS实例,之后还将支持Amazon SageMaker和MSK。
Garman表示,AWS Outposts是金融服务、医疗、制造、媒体和娱乐等行业的理想选择。
他说:“最常见的情况之一,就是需要应用到最终用户或者现场设备的延迟控制在个位数毫秒级。客户可能需要在对精度和质量有要求的工厂车间运行计算密集型工作负载,还有一些客户拥有的图形密集型应用例如图像分析,需要对最终用户或者存储密集型工作负载进行低延迟的访问,这些负载会每天收集和处理数百TB的数据。客户希望将云部署与他们的本地环境进行集成,并使用AWS服务实现一致的混合体验。”
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。