9月26日,2019杭州云栖大会上,阿里云与Facebook宣布达成关于深度学习框架PyTorch的合作,开发者可以在阿里云机器学习平台上方便快捷获取PyTorch框架,使用模型训练、预测部署等全流程功能,享受云带来的便捷体验。
“通过PyTorch开源团队与阿里云智能平台的深度合作,我们有信心显著降低AI开发和应用的门槛,实现在各种行业里AI的更广泛落地。”阿里巴巴计算平台事业部总裁贾扬清表示。
PyTorch是目前全球最受欢迎的深度学习框架之一,以灵活性和易用性为特点,在AI科研以及成果转化领域有特殊优势,能帮助开发者快速、灵活开展深度学习实验,并提供无缝转换模型的torchscript,实现高性能的生产部署。
然而,传统的PyTorch框架多采用本地部署,对环境的依赖程度非常高,仅这一点就让让大部分新用户望而却步。而云计算的天然特性就解决了这一难题,开发者无需考虑环境问题,即可直接部署PyTorch框架。不仅如此,在阿里云机器学习平台上,还为机器学习开发者提供了上百种算法和大规模分布式计算服务,支持多款主流深度学习框架,提供从数据处理、模型训练、服务部署到预测的一站式服务。
随着人工智能的不断发展与运用,市面上涌现出越来越多优秀的深度学习框架,而如何在云端快速获取、运用好深度学习框架,无疑又是未来的一大趋势。
Facebook副总裁Bill jia认为,基于阿里云庞大的开发者生态,此次合作将进一步扩大PyTorch开源社区在国内研究人员及工程师社区的影响力,给用户带来更多技术支持,第一时间体验享受计算机视觉、自然语言处理和强化学习等领域源源不断的开发库与工具。
好文章,需要你的鼓励
AWS通过升级SageMaker机器学习平台来扩展市场地位,新增观测能力、连接式编码环境和GPU集群性能管理功能。面对谷歌和微软的激烈竞争,AWS专注于为企业提供AI基础设施支撑。SageMaker新功能包括深入洞察模型性能下降原因、为开发者提供更多计算资源控制权,以及支持本地IDE连接部署。这些更新主要源于客户需求,旨在解决AI模型开发中的实际问题。
南洋理工大学研究团队开发了WorldMem框架,首次让AI拥有真正的长期记忆能力,解决了虚拟世界模拟中的一致性问题。该系统通过记忆银行存储历史场景,并使用智能检索机制,让AI能准确重现之前的场景和事件,即使间隔很长时间。实验显示在Minecraft和真实场景中都表现出色,为游戏、自动驾驶、机器人等领域带来广阔应用前景。
AI虽具备变革企业洞察力的潜力,但成功依赖于数据质量。大多数AI项目失败源于数据混乱分散而非算法局限。谷歌BigQuery云数据AI平台打破数据孤岛,简化治理,加速企业AI应用。通过AI自动化数据处理,实现实时分析,并与Vertex AI深度集成,使企业能够高效处理结构化和非结构化数据,将智能商业转型从愿景变为现实。
MTS AI研究团队提出RewardRanker系统,通过重排序模型和迭代自训练显著提升AI代码生成质量。该方法让13.4B参数模型超越33B大模型,在多种编程语言上表现优异,甚至在C++上超越GPT-4。通过引入困难负样本和PPO优化,系统能从多个代码候选中选出最优方案,为AI编程助手的实用化奠定基础。