至顶网软件与服务频道消息:IBM已经与麻省理工学院的研究人员合作开发了一种新方法,可以更有效地训练“视频识别”深度学习模型。
深度学习是机器学习的一个分支,旨在复制人脑解决问题的方式,已经在语言翻译、图像和语音识别等领域引发了重大颠覆。
视频识别类似于图像分类,深度学习模型会尝试识别视频中的一切,包括所看到的对象和人物,他们在做什么等等。两者之间的主要区别在于,视频相比简单的静态图像具有更多的运动部分,因此训练深度学习模型来理解视频内容要花费更多的时间和精力。
麻省理工学院在今天的一篇博客文章中解释说:“据估计,训练视频识别模型所需要的数据比训练图像分类模型最多可多出50倍,处理能力则是其8倍。”
当然,没有人喜欢为这种任务投入大量的计算资源,因为成本是极高的。此外,这种任务对资源的要求,使其几乎无法在低功率移动设备上运行视频识别模型。
这些问题促使麻省理工学院电气工程与计算机科学系助理教授Song Han领导的研究团队提出了一种更为有效的视频识别训练模型,这项新技术极大地减少了视频识别模型的大小,从而缩短了训练时间并提高了移动设备的性能。
“我们的目标是让使用低功耗设备的任何人都可以使用AI。要做到这一点,我们就需要设计出一种高效的AI模型,这种模型能耗低,且可以在边缘设备上平稳运行。”
图像分类模型通过在图像像素中查找图案来建立工作模式,以构建它们看到的内容呈现。在有足够示例的情况下,该模型可以学习识别人、物体及其之间的关联方式。
视频识别的方式类似,但是深度学习模型更进了一步,使用“三维卷积”在一系列图像(视频帧)编码时间,从而使得模型更大、计算更密集。为了减少计算量,Han和他的同事设计出了一种“时间偏移模块”,该模块将选定视频帧的特征映像移动到相邻的帧,通过混合过去、现在和未来的空间呈现,模型无需明确呈现即可实现时间流逝感。
这项新技术让基于Something-Something视频数据集(一系列密集标记的视频剪辑集合,呈现了人类对日常事务执行所预设的基本动作)的模型训练速度比现有模型快了3倍。
该模型甚至可以实时理解人们的动作,并且能耗很低,例如该模型让摄像头上安装的单板计算机立即对手势进行分类,能耗相当于自行车灯的电量。
Constellation Research首席分析师、副总裁Holger Mueller表示,机器学习仍处于发展早期阶段,采用这种创新方法所能获得的收益也是如此。“今天MIT和IBM合作加速视频识别技术的发展,而这正是目前难度最大的机器学习任务之一。”
IBM和MIT表示,这种新的视频识别模型可以在运用于各个领域,例如可以加快在YouTube或类似服务上分类视频的速度,还可以使医院在本地而不是在云中运行AI应用,从而使机密数据更安全。
好文章,需要你的鼓励
Xbench是知名投资机构红杉中国推出一款全新的AI基准测试工具,旨在真实地反映AI的客观能力,其在评估和推动AI系统提升能力上限与技术边界的同时,会重点量化AI系统在真实场景的效用价值,并采用长青评估的机制,去捕捉AI产品的关键突破。
这项研究首次将在线强化学习成功应用于流匹配模型,通过巧妙的ODE到SDE转换和去噪减少策略,显著提升了AI图像生成的精确度和可控性。在复合场景生成、文字渲染等任务上取得突破性进展,为AI生成领域开辟了新的技术路径。
Atlassian总裁Anu Bharadwaj在Transform 2025大会上分享了公司AI智能体规模化的实践经验。她强调,成功部署AI智能体需要营造实验文化,而非仅依靠自上而下的指令。Atlassian通过Rovo Studio平台为各团队提供了构建定制化智能体的环境,创造心理安全的工作氛围,鼓励员工大胆尝试和迭代。公司客户通过该平台显著提升了工作效率,建筑行业客户将路线图创建时间缩短75%。
这篇由阿里巴巴集团联合多所知名高校发表的综述论文,系统梳理了统一多模态理解与生成模型的最新发展。研究将现有模型分为扩散、自回归和混合三大类型,详细分析了不同图像编码策略的特点,整理了相关数据集和评估基准,并深入探讨了当前面临的技术挑战。