上市公司ServiceNow的Now Platform提供了一个集中式枢纽,让IT团队可以通过它管理企业的基础设施和应用。Watson AIOps是IBM的一款软件产品,利用机器学习检测IT问题例如网络中断。
两家公司准备在今年晚些时候将这两款产品进行整合,让IT专业人员能够在ServiceNow界面中查看Watson AIOps检测到的问题,并通过该界面执行日常任务,此外Watson AIOps将提供有关如何解决这些问题的建议。
此次集成发挥了双方的特长,由于ServiceNow的平台倾向于在客户IT运营中扮演核心角色,因此可以提供有关基础设施状态的最新数据;而Watson AIOps则可以分析ServiceNow中的数据,创建一个基准模型,描述企业的技术环境运行状态,通过查找与该基准不同的事件来发现异常情况。
ServiceNow和IBM将致力于利用该解决方案缩短解决技术问题的时间。两家公司表示,从早期客户部署获得的数据来看,在某些情况下Watson AIOps可以将故障排除速度提高60%多,而这可能就意味着像关键任务型应用的宕机时间会减少60%。
IBM首席执行官Arvind Krishna表示:“通过与ServiceNow及其市场领先的Now Platform合作,客户将能够利用AI快速降低意外IT事件的成本。”
两家公司将联合向市场中推广该解决方案,ServiceNow IT工作流产品高级副总裁Pablo Stern表示:“IBM正在扩展ServiceNow在全球的实践,新增了Now Platform的咨询、实施和托管服务等功能。ServiceNow也共同投资,通过培训和认证IBM员工和专业员工以取得客户成功。”
IBM将通过此次合作,增加Watson AIOps对于ServiceNow用户的吸引力,反过来,这些企业组织也将获得更多自动化特性,从而能够简化他们的IT工作流程。
Watson AIOps将利用ServiceNow中的IT基础设施数据来发现异常情况,这也突显了ServiceNow的数据管理功能对其整体产品战略的重要性正在日益提高。最近ServiceNow一直在加强这部分功能集。今年6月,ServiceNow收购了比利时初创公司Sweagle NV,后者的数据库可以用于存储有关企业应用和基础设施状态的配置信息。
好文章,需要你的鼓励
在我们的日常生活中,睡眠的重要性不言而喻。一个晚上没睡好,第二天的工作效率就会大打折扣,而充足的睡眠不仅能让我们恢复精力,还能帮助大脑整理和巩固当天学到的知识。有趣的是,AI模型竟然也表现出了类似的“睡眠需求”。
DeepSeek-AI团队通过创新的软硬件协同设计,仅用2048张GPU训练出性能卓越的DeepSeek-V3大语言模型,挑战了AI训练需要海量资源的传统观念。该研究采用多头潜在注意力、专家混合架构、FP8低精度训练等技术,大幅提升内存效率和计算性能,为AI技术的民主化和可持续发展提供了新思路。
尽管模型上下文协议(MCP)自11月推出以来用户数量快速增长,但金融机构等监管行业仍保持谨慎态度。银行等金融服务公司虽然在机器学习和算法方面是先驱,但对于MCP和Agent2Agent(A2A)系统的采用较为保守。监管企业通常只使用内部代理,因为其API集成需要经过多年审查以确保合规性和安全性。专家指出,MCP缺乏基本构建块,特别是在互操作性、通信标准、身份验证和审计跟踪方面。金融机构需要确保代理能够进行"了解您的客户"验证,并具备可验证的身份识别能力。
加拿大女王大学研究团队首次系统评估了大型视频语言模型的因果推理能力,发现即使最先进的AI在理解视频中事件因果关系方面表现极差,大多数模型准确率甚至低于随机猜测。研究创建了全球首个视频因果推理基准VCRBench,并提出了识别-推理分解法(RRD),通过任务分解显著提升了AI性能,最高改善幅度达25.2%。