全球领先的边缘计算解决方案提供商凌华科技推出高度紧凑且支持GPU的全新DLAPx86系列深度学习加速平台,是市场上最紧凑的GPU深入学习加速平台。DLAPx86系列可用于部署边缘处的大规模深度学习,采集边缘产生的数据并采取行动。DLAPx86系列针对大规模边缘AI布署所设计,可将深度学习带进终端,拉近与现场资料、现场决策应变的距离。该平台的优化配置可加速需要大量内存的计算密集型AI推理和任务学习,助力各行业应用的AI部署。
凌华科技嵌入式平台和模块产品中心协理蔡雨利表示:“DLAPx86专为大型多层网络以及复杂数据集设计。凌华科技DLAP系列为深度学习应用提供的灵活性是其核心价值所在。基于不同应用的神经网络和AI推理速度需求,架构师可组合出最适化的CPU与 GPU处理器配置,提高产生每单位投资的最高效能。”
DLAPx86系列优势:
DLAPx86在边缘AI应用中在效能、体积、重量、功耗等设计取得最佳平衡,将每瓦效能、每单位投资效能极大化,助力医疗、制造业、交通运输和其他领域的发展。应用案例包括:
好文章,需要你的鼓励
IDC数据显示,Arm架构服务器出货量预计2025年将增长70%,但仅占全球总出货量的21.1%,远低于Arm公司年底达到50%市场份额的目标。大规模机架配置系统如英伟达DGX GB200 NVL72等AI处理设备推动了Arm服务器需求。2025年第一季度全球服务器市场达到创纪录的952亿美元,同比增长134.1%。IDC将全年预测上调至3660亿美元,增长44.6%。配备GPU的AI服务器预计增长46.7%,占市场价值近半。
保加利亚研究团队通过创新的双语训练方法,成功让AI模型学会了在非英语环境下使用外部工具。他们开发的TUCAN模型在保加利亚语功能调用任务上实现了显著提升,小模型改进幅度达28.75%。更重要的是,团队开源了完整的方法论,为全球多语言AI工具使用能力的发展提供了可复制的解决方案。
AI正在重塑创业公司的构建方式,这是自云计算出现以来最重大的变革。January Ventures联合创始人Jennifer Neundorfer将在TechCrunch All Stage活动中分享AI时代的新规则,涵盖从创意验证、产品开发到团队架构和市场策略的各个方面。作为专注于B2B早期投资的风投合伙人,她将为各阶段创业者提供关键洞察。
清华大学团队开发了首个能同时理解街景、卫星图、轨迹和地理数据的城市AI系统UrbanLLaVA。通过创新的三阶段训练法和多模态融合技术,该系统在十二项城市任务测试中显著超越现有方法,为智慧城市、导航服务、城市规划等领域带来突破性进展,代码已开源。