Meta(前身为Facebook)一直致力于使用机器学习技术来应对气候变化并提高工业系统的效率。近日Meta宣布,将使用人工智能解决气候变化问题并开发相应的工程解决方案。
这次公布的举措之一包括Open Catalyst项目,是Meta AI与卡内基梅隆大学化学工程系合作进行的项目,通过把AI研究人员聚集在一起设计出新的机器学习模型,用于预测能源储备的新型化学反应。
例如,在可再生能源方面,太阳能和风能依赖于持续的光照和风来进行发电,如果长时间没有晴天或者大风的情况下,发电量就会下降,这就需要建造能量储存器(通常是电池)来吸收多余的能量,以便在非高峰时段进行输送。
Open Catalyst首席研究科学家Larry Zitnick表示:“问题在于,电池作为存储介质并不能很好地进行扩展,我们需要找到一种实际上能可扩展能源的存储方法,这就是Open Catalyst项目真正发挥作用的地方。”
Open Catalyst项目提供了用于发现化学催化剂的数据集,用于为可再生能源网络构建更便宜、更加可扩展的电池。Zitnick表示,在研究团队的不断努力下,Open Catalyst已经打造出了全球规模最大的可再生能源存储材料训练数据集。
据Zitnick称,可能有多达数百万种不同的材料组合需要他们在实验室进行测试,而现实情况是他们的测试速度仅为每年1000种。这对人类来说是一个缓慢而艰巨的过程。但是,Open Catalyst项目拥有超过800万个数据点和对4万个不同材料的模拟,可以为研究人员提供大规模的实验支持。
他还补充说,该系统可以通过计算机的算例在几秒钟内进行“强力”模拟,相比之下其他系统往往需要几天的时间才能找到可行的优化,然后研究人员再在实验室对其进行测试。
使用AI应对气候危机的另一个重要方面是其自身基础设施和能源需求的效率。Meta高级研究员Mike Schroepfer写道,Meta公司在全球范围内的运营是100%由可再生能源支撑的,但效率仍然至关重要,目前Meta正在探索Green AI模型。
Schroepfer表示:“Meta和整个行业的研究人员目前正在探索多种Green AI的方法,包括开发测量AI系统能源效率所需的标准,以及大规模运行AI所需的算法和计算硬件。”
在资源效率和使用方面,大规模AI模型优化是一大问题,尤其是在构建强大的AI模型并且需要针对不断增长的复杂数据集进行训练方面。Meta AI团队最近发表的一篇论文强调了在这样规模数据集下所带来的巨大挑战。
在一项实验中,研究人员能够找到多种优化手段,将用于语言翻译的基础设施资源减少800倍。这种级别的算法优化和性能提升的潜力,将使用AI进行自然语言处理、翻译,以及在平台上使用AI所造成的排放产生重大影响。
Schroepfer在谈到Green AI项目的进展和Meta团队目前开展的工作时表示:“我们很乐观地看待AI将给气候和可持续性带来的影响,以及我们研究人员和工程师在构建AI方面所发挥的作用。”
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。