Meta(前身为Facebook)一直致力于使用机器学习技术来应对气候变化并提高工业系统的效率。近日Meta宣布,将使用人工智能解决气候变化问题并开发相应的工程解决方案。
这次公布的举措之一包括Open Catalyst项目,是Meta AI与卡内基梅隆大学化学工程系合作进行的项目,通过把AI研究人员聚集在一起设计出新的机器学习模型,用于预测能源储备的新型化学反应。
例如,在可再生能源方面,太阳能和风能依赖于持续的光照和风来进行发电,如果长时间没有晴天或者大风的情况下,发电量就会下降,这就需要建造能量储存器(通常是电池)来吸收多余的能量,以便在非高峰时段进行输送。
Open Catalyst首席研究科学家Larry Zitnick表示:“问题在于,电池作为存储介质并不能很好地进行扩展,我们需要找到一种实际上能可扩展能源的存储方法,这就是Open Catalyst项目真正发挥作用的地方。”
Open Catalyst项目提供了用于发现化学催化剂的数据集,用于为可再生能源网络构建更便宜、更加可扩展的电池。Zitnick表示,在研究团队的不断努力下,Open Catalyst已经打造出了全球规模最大的可再生能源存储材料训练数据集。
据Zitnick称,可能有多达数百万种不同的材料组合需要他们在实验室进行测试,而现实情况是他们的测试速度仅为每年1000种。这对人类来说是一个缓慢而艰巨的过程。但是,Open Catalyst项目拥有超过800万个数据点和对4万个不同材料的模拟,可以为研究人员提供大规模的实验支持。
他还补充说,该系统可以通过计算机的算例在几秒钟内进行“强力”模拟,相比之下其他系统往往需要几天的时间才能找到可行的优化,然后研究人员再在实验室对其进行测试。
使用AI应对气候危机的另一个重要方面是其自身基础设施和能源需求的效率。Meta高级研究员Mike Schroepfer写道,Meta公司在全球范围内的运营是100%由可再生能源支撑的,但效率仍然至关重要,目前Meta正在探索Green AI模型。
Schroepfer表示:“Meta和整个行业的研究人员目前正在探索多种Green AI的方法,包括开发测量AI系统能源效率所需的标准,以及大规模运行AI所需的算法和计算硬件。”
在资源效率和使用方面,大规模AI模型优化是一大问题,尤其是在构建强大的AI模型并且需要针对不断增长的复杂数据集进行训练方面。Meta AI团队最近发表的一篇论文强调了在这样规模数据集下所带来的巨大挑战。
在一项实验中,研究人员能够找到多种优化手段,将用于语言翻译的基础设施资源减少800倍。这种级别的算法优化和性能提升的潜力,将使用AI进行自然语言处理、翻译,以及在平台上使用AI所造成的排放产生重大影响。
Schroepfer在谈到Green AI项目的进展和Meta团队目前开展的工作时表示:“我们很乐观地看待AI将给气候和可持续性带来的影响,以及我们研究人员和工程师在构建AI方面所发挥的作用。”
好文章,需要你的鼓励
在“PEC 2025 AI创新者大会暨第二届提示工程峰会”上,一场以“AIGC创作新范式——双脑智能时代:心智驱动的生产力变革”为主题的分论坛,成为现场最具张力的对话空间。
人民大学团队开发了Search-o1框架,让AI在推理时能像侦探一样边查资料边思考。系统通过检测不确定性词汇自动触发搜索,并用知识精炼模块从海量资料中提取关键信息无缝融入推理过程。在博士级科学问题测试中,该系统整体准确率达63.6%,在物理和生物领域甚至超越人类专家水平,为AI推理能力带来突破性提升。
Linux Mint团队计划加快发布周期,在未来几个月推出两个新版本。LMDE 7代号"Gigi"基于Debian 13开发,将包含libAdapta库以支持Gtk4应用的主题功能。新版本将停止提供32位版本支持。同时Cinnamon桌面的Wayland支持持续改进,在菜单、状态小程序和键盘输入处理方面表现更佳,有望成为完整支持Wayland的重要桌面环境之一。
Anthropic研究团队开发的REINFORCE++算法通过采用全局优势标准化解决了AI训练中的"过度拟合"问题。该算法摒弃了传统PPO方法中昂贵的价值网络组件,用统一评价标准替代针对单个问题的局部基准,有效避免了"奖励破解"现象。实验显示,REINFORCE++在处理新问题时表现更稳定,特别是在长文本推理和工具集成场景中展现出优异的泛化能力,为开发更实用可靠的AI系统提供了新思路。