抛开量子比特的物理学基本原理不谈,云巨头倒是对未来充满信心。
量子硬件显然还未发展成熟,但量子计算的发展步伐要比量子网络略快些许。事实上,对于超安全交易而言,量子网络已经成为一个深奥、但却极具深远意义的技术领域。而亚马逊云科技(AWS)正致力于将量子连接从实验室环境带入现实世界。
AWS一直没有推动自研量子处理器,而是通过Braket服务围绕现有量子设备和工具建立了生态系统。但之前的努力基本都针对量子计算展开,如今这家科技巨头终于将目光投向了量子网络。
除了2021年底建立的量子计算中心之外,AWS还宣布将建设量子网络中心。该公司宣称,量子网络中心的建设目的在于“解决基础性科学与工程挑战,并为量子网络开发新的硬件、软件与应用程序。”
与量子计算机一样,这些网络同样利用粒子物理学原理,特别是借由光子实现信息传输。AWS描述了早期潜在应用场景,包括对各独立量子系统进行集群化,由此实现超越传统加密的量子密钥分发——这也是美国政府目前密切关注的研究课题。
2020年,美国能源部建立起量子互联网蓝图,其中包含四大量子网络优先研究方向,用以明确当前最重要的攻坚概念:
尽管仍有未解的难题,但美国能源部表示,他们“已经获得一定进展,可以考虑从小规模实验转向建立首个全国性量子互联网设施。”
美国能源部的第三项研究领域,针对的就是功能性量子互联网的主要实现障碍之一。从本质上讲,这里指向的是量子物理学层面的一个基本问题:光子无法被放大,因此传输范围是有限的。AWS解释称,“这就意味着必须开发出特殊新技术,例如量子中继器及传感器,才能建立起全球量子网络。”
这类网络必须依赖于量子纠缠效应,但即便如此,传输范围仍无法令人满意。美国能源部在其蓝图中表示,纠缠实验的距离虽然可延伸至令人印象深刻的1200公里,但还是不足以支撑起全球互联网体系。
荷兰研究人员最近解决了量子网络中的一个基本问题——通过中间节点实现数据传输。但论文并未提及此项实验能够实现多大的传输范围。
面对一系列工程与科学挑战,AWS的量子网络中心当然得挑选出合适的切入课题,但中心建立公告中并未具体说明。亚马逊方面也未披露关于量子网络中心的未来发展计划。
好文章,需要你的鼓励
在迪拜Gitex 2025大会上,阿联酋成为全球AI领导者的雄心备受关注。微软正帮助该地区组织从AI实验阶段转向实际应用,通过三重方法提供AI助手、协同AI代理和AI战略顾问。微软已在阿联酋大举投资数据中心,去年培训了10万名政府员工,计划到2027年培训100万学习者。阿联酋任命了全球首位AI部长,各部门都配备了首席AI官。微软与政府机构和企业合作,在公民服务和金融流程等领域实现AI的实际应用,构建全面的AI生态系统。
查尔斯大学和意大利布鲁诺·凯斯勒基金会的研究团队首次系统性解决了同声传译AI系统延迟评估的准确性问题。他们发现现有评估方法存在严重偏差,常给出相互矛盾的结果,并提出了YAAL新指标和SOFTSEGMENTER对齐工具。YAAL准确性达96%,比传统方法提升20多个百分点。研究还开发了专门的长音频评估工具LongYAAL,为AI翻译技术发展提供了可靠的测量标准。
苹果与俄亥俄州立大学研究人员发布名为FS-DFM的新模型,采用少步离散流匹配技术,仅需8轮快速优化即可生成完整长文本,效果媲美需要上千步骤的扩散模型。该模型通过三步训练法:处理不同优化预算、使用教师模型指导、调整迭代机制来实现突破。测试显示,参数量仅1.7亿至17亿的FS-DFM变体在困惑度和熵值指标上均优于70-80亿参数的大型扩散模型。
印度理工学院团队构建了史上最大规模印度文化AI测试基准DRISHTIKON,包含64288道多语言多模态题目,覆盖15种语言和36个地区。研究评估了13个主流AI模型的文化理解能力,发现即使最先进的AI也存在显著文化盲区,特别是在低资源语言和复杂推理任务上表现不佳,为构建文化感知AI提供了重要指导。