Alphabet旗下的DeepMind部门正在使用内部开发的人工智能系统AlphaFold来预测科学界已知的大多数蛋白质结构。
DeepMind今天宣布了这一里程碑式的成果。DeepMind正在通过免费访问的UniProt蛋白质数据库向科学家提供该AI系统预测的蛋白质结构数据,预计这些数据将加速新药的发现并推进其他多个领域的研究。
蛋白质是生命的基石,是由称为氨基酸的化学物质组成的分子,有超过20种氨基酸以高度复杂的方式相互作用,氨基酸之间的相互作用导致蛋白质呈现出复杂的三维形状,这一直是研究人员关注的焦点。
蛋白质的形状直接影响其行为,因此,了解蛋白质的形状是许多研究项目中重要的一步,DeepMind开发的AlphaFold AI系统可以协助科学家完成此项任务。
有很多种方法可以识别蛋白质氨基酸的结构,然而,这些方法很大程度上都是非常耗时的:DeepMind表示,在某些情况下,绘制出单个蛋白质的结构可能需要数年时间,而且需要使用价值数百万美元的设备。
为了加快研究速度,几十年来,科学家们一直致力于开发出能够根据蛋白质所包含的氨基酸自动预测蛋白质结构的软件。但由于这项任务的复杂性,开发此类软件已经被证明是一项巨大的挑战。根据DeepMind的说法,一种典型的蛋白质预计有非常多潜在的结构,以至于手动计算这些结构所需的时间比宇宙的年龄还要长。
AlphaFold克服了这一挑战。DeepMind早在2018年第一次详细介绍了AlphaFold系统,并在两年后推出了具有改进功能的新版本。增强之后的系统可以预测蛋白质结构,平均错误率约为1.6埃(或约为一个原子的宽度)。
现在据DeepMind透露,已经使用AlphaGo预测了超过2亿个蛋白质结构,范围涵盖了科学界已知的大多数蛋白质。
DeepMind首席执行官Demis Hassabis在一篇博客文章中详细介绍说:“此次更新包括预测植物、细菌、动物和其他生物的结构,为研究人员提供了许多新机会,让他们可以使用AlphaFold推进在包括可持续性、粮食不安全问题以及被忽视的疾病等重要问题。”
DeepMind正在通过UniProt蛋白质数据库提供预测蛋白质结构的数据集,这些结构还将添加到托管在Google Cloud上的开源数据集目录中。根据DeepMind称,之前发布的100万个预测蛋白质结构集合已经被超过500000名研究人员访问。
Hassabis这样写道:“从抗击疾病到开发疫苗,AlphaFold已经在我们面临的一些最重大的全球挑战中,取得了令人难以置信的进展,而这只是未来几年它所发挥影响力的一个开始。AlphaFold是对未来的一瞥,让我们看到把计算和人工智能方法应用于生物学的各种可能性。”
DeepMind同时也在探索AI在其他领域的新应用,例如开发了可以下围棋和预测天气的机器学习系统,最近还推出了一个可以恢复古希腊受损铭文缺失文本、预算创建时间的系统。
好文章,需要你的鼓励
Red Hat OpenShift、OpenShift AI、Edge Device和Developer Hub的更新将会为合作伙伴提供更多与客户开展业务的方式。
谷歌云(Google Cloud)今天宣布升级旗下 Kubernetes 引擎的容量,以应对更大规模的模型,Kubernetes 引擎的容量将从目前支持 15000 个节点集群升级到支持 65000 个节点集群。
随着AI的使用、创新和监管混乱超过认可的标准,IT领导者只能开发内部方法来减轻AI风险,依靠框架、工具和他们的同事来正确使用AI。
几年前,当澳大利亚红十字会(Australian Red Cross)这个社区服务慈善机构开始进行数字化转型的时候,发现有很多不同的系统无法协同工作。如今,经过数据梳理和发挥作用,可以满足不断变化的需求。