在今年的Logimat展会上,西门子在“智能内部流程——体验流程”环节展示了一个物流中心的数字孪生。物流行业如今正处于快速变化的环境之中:对能源效率和可持续性的需求不断提高、还面对着劳动力短缺和网络安全威胁的挑战。西门子在内部物流行业整个价值链领域的自动化和数字化产品组合非常丰富,可以帮助机器制造商、仓库运营商应对这些挑战。
为此,Siemens Digital Enterprise产品组合中的数字化和自动化解决方案以及Siemens Xcelerator Portfolio的物联网软硬件涵盖了仓库运营的方方面面,如收货、运输、存储、拣选、包装和出货。全自动物流系统可以加快仓库运营、优化流程、降低成本并减少失误,实现更高的吞吐量。
这些都将在这次展会上通过西门子纽伦堡物流中心的数字孪生展示。该中心每天处理1.2万个订单、2.2万个送货品类、27台堆垛机和3公里的自动传送带,为全球2.5万家客户提供服务。通过这个案例,客户可以在展会上详细了解仿真场景是如何帮助优化的,例如如何通过优化排班实现生产力最大化。
它还展示了如何用数字孪生帮助识别瓶颈和峰值负载以优化物流,以及如何通过这种方式保持吞吐量和仓库整体绩效,实现接近100%的履行率。现实世界和数字世界之间的无缝交互提高了仓库的生产力和灵活性,持续性地降低了成本和能源消耗,从而减少了碳足迹。
新功能:基于人工智能的机器人自动拣选
Simatic Robot Pick AI是西门子物流产品组合中的新成员,这款使用了机器学习的3D图像处理软件专门用于机器人解决方案,该软件也将在Logimat上展示。这款软件能让机器人能够按照拣选任务抓取仓库中的任何物品,无论形状和大小如何。经过预训练的深度学习算法让该功能可以识别出最适合的3D拾取位置,并将其提供给机器人执行。它会在尽可能短的时间内计算出可靠的拾取姿势,让高通量系统不会发生内部碰撞。
该系统无需额外进行基于CAD的培训,应用程序在类似平板电脑的工控机上的计算时间不超过1.5秒,让系统可以每小时完成超过1000次拣选。错误率平均不到2%,和人类相当。未来,人工智能控制的拣选机器人可以提供更多灵活性,以便在动态变化的情况下及时处理形状、尺寸和包装类型不同的物品,从而减轻劳动力短缺的影响,提高仓库的运营效率。Simatic Robot Pick AI可以与TIA Portal自动化平台无缝集成,借助Simatic Robot Library,该工控机系统可以同机器人建立标准化通信。
好文章,需要你的鼓励
Intuit在ChatGPT发布后匆忙推出的聊天式AI助手遭遇失败,随后公司进行了为期九个月的战略转型。通过观察客户实际工作流程,发现手动转录发票等重复性劳动,决定用AI智能体自动化这些任务而非强加新的聊天行为。公司建立了三大支柱框架:培养构建者文化、高速迭代替代官僚主义、构建GenOS平台引擎。最终推出的QuickBooks支付智能体让小企业平均提前5天收到款项,每月节省12小时工作时间。
希伯来大学研究团队开发出MV-RAG系统,首次解决了AI在生成稀有物品3D模型时的"胡编乱造"问题。该系统像拥有图像记忆库的艺术家,能先搜索相关真实照片再生成准确3D视图。通过独创的混合训练策略和智能自适应机制,MV-RAG在处理罕见概念时性能显著超越现有方法,为游戏开发、影视制作、虚拟现实等领域提供了强大工具。
马斯克旗下xAI公司发布专为开发者设计的新AI模型grok-code-fast-1,主打快速且经济的推理能力。该模型属于Grok 4系列,具备自主处理任务的能力。xAI声称其在SWE-bench评测中解决了70.8%的实际软件问题,表现优于GPT-5和Claude 4。不过模型存在较高的不诚实率问题。用户可通过GitHub Copilot等平台免费试用7天,需要API密钥访问。
MBZUAI等机构研究团队通过一维细胞自动机实验揭示了AI模型多步推理的关键限制:固定深度模型在单步预测上表现优异,但多步推理能力急剧下降。研究发现增加模型深度比宽度更有效,自适应计算时间、强化学习和思维链训练能突破这些限制。这为开发更强推理能力的AI系统提供了重要指导,强调了真正推理与简单记忆的本质区别。