庆应义塾大学SFC研究所(KRIS)与软银公司的先进技术研究所正合作开发新项目,为自动驾驶构建模型。
2023年5月,软银与SFC研究所宣布推出概念验证,用于增强东京南部藤泽市庆应义塾大学湘南藤泽校区(SFC)的自动驾驶班车运营。此项概念验证成果的独特之处,在于其用到了数字孪生——一种将物理世界重现为数字副本形式的技术手段。
数字孪生:先进自动驾驶的关键一环
实验室。在拥有独立5G网络的校园内,物理世界中的信息和事件将通过图像识别和空间传感技术在虚拟空间中进行数字化转换和共享。基于该数字孪生平台的各类研究与开发项目也在推进当中,而面向自动驾驶班车的高级运营概念验证就是其中之一。
除了车载摄像头和传感器外,园区周边还安装有六个用于获取信息的传感器,另有摄像头负责捕捉交通灯信号数据。在验证如何将这些数据集同数字孪生结合使用的同时,软银和SFC研究所也在利用它们真正推动自动驾驶进步。
自动驾驶需要诸多控制要素
在概念验证当中,本次测试完成了两项工作:
(1)在右转时,检测迎面驶来的车辆;(2)对交通信号做出预测。
右转时检测对向车辆
SFC校区的行驶路线包含直行道、右转道和弯道等。为了提升自动驾驶的实际表现,必须收集关于周边环境的大量数据。例如,仅通过安装在车辆上的摄像头,并无法检测远距离驶来的车辆状态。但通过接收来自数字孪生平台的信息,自动穿梭巴士系统就能提前对远端交通状况做出评估,甚至接收有多少人在场、他们如何移动以及是否有车辆从远处驶来的预报数据。这就让先进自动驾驶和提前避险成为了现实。
过去,右转只能由驾驶员在目视检查之后手动操作。但在本次概念验证中,只有在通过数字孪生副本提供的车辆和行人信息并确认安全之后,系统才会执行自动右转操作。这就有效解决了车载传感器无法检测远处对向来车的弊端。
交通信号预测
对自动驾驶而言,车辆提前了解交通信号灯何时转红或转绿,对于确保乘坐舒适性和安全性至关重要。例如,若能够预测交通灯何时变红,则可自动调整减速时间以防止紧急刹车。此外,如果能分析此前交通信号灯数据来预测指示转换的具体时长,车辆就能提前减速以避免在十字路口前突然制动。
但受背灯等原因的影响,安装在车辆上的摄像头有时无法准确检测到交通信号信息。
在本次概念验证中,研究人员采用AI对SFC园区周边拍摄的信号图像来预估交通灯信息,并将结果与自动穿梭巴士共享。
好文章,需要你的鼓励
本文评测了六款控制台平铺终端复用器工具。GNU Screen作为老牌工具功能强大但操作复杂,Tmux更现代化但学习曲线陡峭,Byobu为前两者提供友好界面,Zellij用Rust编写界面简洁易用,DVTM追求极简主义,Twin提供类似TurboVision的文本界面环境。每款工具都有各自特点和适用场景。
韩国汉阳大学联合高通AI研究院开发出InfiniPot-V框架,解决了移动设备处理长视频时的内存限制问题。该技术通过时间冗余消除和语义重要性保留两种策略,将存储需求压缩至原来的12%,同时保持高准确性,让手机和AR眼镜也能实时理解超长视频内容。
网络安全公司Snyk宣布收购瑞士人工智能安全研究公司Invariant Labs,收购金额未公开。Invariant Labs从苏黎世联邦理工学院分拆成立,专注于帮助开发者构建安全可靠的AI代理工具和框架。该公司提供Explorer运行时观察仪表板、Gateway轻量级代理、Guardrails策略引擎等产品,并在工具中毒和模型上下文协议漏洞等新兴AI威胁防护方面处于领先地位。此次收购将推进Snyk保护下一代AI原生应用的使命。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。