数字孪生是一种流行方法,可以针对物理对象(如汽车、工厂和建筑)以及非固定实体(如业务流程、供应链甚至城市基础设施)进行建模和测试。埃森哲云优先首席技术专家 Teresa Tung 将数字孪生描述为企业“转变物理产品开发的一种方式,就像软件产品开发从瀑布式发展到敏捷式一样。”
用于测试的传统建模与数字孪生的主要区别在于,后者利用真实世界数据的持续更新运行。为支持数字孪生而设计的系统通常会配备一套语义模式,帮助连接模拟组件和真实组件的不同视图。
这些类型的模式可以帮助电气、机械和其他类型的工程团队通过单一视图进行设计并权衡性能,而不用将数据在不同的工具和面板之间传来传去。但是,数字孪生方法并非万无一失,想要有效运用数字孪生方法的话,企业需要问自己三个重要问题,这三个问题分别关于数据完整性、业务背景和现有测试程序的准确性。
孪生系统可信吗?
数据管理提供商DataStax的战略副总裁Bryan Kirschner建议质量保证团队特别关注现实世界和数字孪生可能出现的状态差异。测试团队需要测试各种情况,以确定数字孪生作为权威真相来源的可信赖条件范围。
Kirschner表示:“测试目标从‘这个系统运行得如何’转变为‘它作为权威的真相来源是否值得信任’。”Kirschner强调了识别各种具体场景的重要性,在这些场景中,来自孪生的数据可能无法准确表示真实世界的情况。要做到这一点,质量保证团队需要确保数字孪生的底层设计与企业现有的测试工作流程一致。
例如,mCloud Technologies公司的首席产品和技术官Jim Christian表示,该公司正在使用数字孪生方法来建模和模拟大容量数据处理系统,实时测试运行性能。为了实现这一目标,数字孪生系统采用模块化架构设计,这样既可以单独测试,也可以一起测试,从而能够更密切地跟踪数据完整性。
背景是否清晰?
数字服务提供商Apexon的企业质量保证高级总监Siva Anna认为,质量保证团队从现实世界中收集哪些数据点用于数字孪生需要仔细斟酌,这一点非常重要。数字孪生的成功应用取决于对特定重要参数的捕捉,这些参数最终有助于校准性能并改进设计。测试团队应该牢记,向数字孪生系统提供数据的各种传感器可能涉及多种数据格式和质量水平,需要将其整合到单一视图中。
Blue Yonder供应链规划副总裁Puneet Saxena表示,测试团队还应该与开发人员合作,了解通过用例表达的背景。例如,针对制造商的集成需求和供应链规划,使用数字孪生在软件模型中详尽地表示物理供应链,那么这个模型就既要表示物理对象,例如仓库、地理位置或者自动化机器,也要表示抽象实体,如物料清单、平均生产周期和生产率目标等。
Saxena表示:“软件对物理现实的表现越逼真,结果就越好。”例如,供应链的数字孪生可以帮助企业根据现有需求、原材料供应、在制产品计划或与生产能力相关的其他因素,预测特定生产设施的产量,从而为该设施确定现实的生产基准。
测试是否全面准确?
德勤咨询公司新兴技术研究总监Scott Buchholz认为,质量保证团队还应为新控制系统设计数字孪生测试,对使用控制软件时的真实情况和数字孪生预期的行为和故障模式进行对比。
质量保证团队需要排除模拟行为与实际行为之间的偏差;这些偏差可能表明孪生系统或者软件出现了问题,或者两者兼而有之。测试的数量、性质和复杂程度因系统的关键程度而异。例如,自动列车的软件控制系统可能要比住宅恒温器系统的控制软件承担的直接责任更重要,测试应确保最终结果在预定的容差范围内反映预期结果——Buchholz认为,这些测试应优先于其他测试。
在某些方面,实施数字孪生项目就类似于引入测试驱动开发(TDD),即软件团队在开始编写代码之前就创建自动测试套件。在TDD中,测试用例和软件都可能出现缺陷。根据自动测试的复杂程度和团队规模,可以由质量保证团队、核心开发团队或者其他专门的应用程序维护团队进行调试和维护,具体要取决于数字孪生本身的复杂程度和底层技术。
好文章,需要你的鼓励
Rivian分拆公司Also与亚马逊达成多年合作协议,将为这家电商巨头提供数千辆新型踏板助力四轮货运车TM-Q。该车辆载重超过400磅,体积小巧可使用自行车道。双方将合作定制车辆以满足亚马逊在欧美的配送需求,预计2026年春季投入使用。Also从Rivian内部项目发展而来,今年独立融资1.05亿美元,将利用可拆卸电池技术和专业物流软件为密集城区提供最后一公里配送解决方案。
Character AI联合耶鲁大学开发的OVI系统实现了音视频的统一生成,通过"孪生塔"架构让音频和视频从生成之初就完美同步。该系统在5秒高清内容生成上显著超越现有方法,为多模态AI和内容创作领域带来突破性进展。
知名投资机构Accel和Prosus宣布建立新的投资合作伙伴关系,专门支持印度初创企业从零开始发展,重点关注那些能够为南亚地区大众提供大规模解决方案的创始人。这是Prosus首次在企业成立阶段进行投资。双方将从创业公司最早期开始共同投资,专注于解决自动化、能源转型、互联网服务和制造业等领域的系统性挑战,初始投资金额从10万到100万美元不等。
这项由南洋理工大学研究团队开发的DragFlow技术,首次实现了在先进AI模型FLUX上的高质量区域级图像编辑。通过创新的区域监督、硬约束背景保护和适配器增强等技术,将传统点对点编辑升级为更自然的区域编辑模式,在多项基准测试中显著超越现有方法,为图像编辑技术带来革命性突破。