IBM近日宣布计划以21.3亿欧元(约合23.3亿美元)收购Software AG的StreamSets和webMethods应用集成平台。
这笔交易是在Software AG被投资公司Silver Lake以超过24亿欧元的估值私有化仅几个月后达成的。与IBM这笔新交易的价值非常接近该公司被私有化时的价格,这表明 StreamSets和webMethods是其产品组合的核心支柱。IBM今天透露,这两款产品“不断增长,利润丰厚”,已经有超过1500家企业安装使用。
在被Silver Lake收购之前,这两款产品是Software AG数字业务收入板块的一部分。该部门还包括其他一些应用软件。在该公司2023年前9个月的5.707亿欧元收入中,StreamSets、webMethods 和数字业务的其他产品占3.932亿欧元。
总部位于德国的Software AG公司于2022年初通过收购一家初创公司获得了StreamSets。这是一个所谓的iPaaS平台,可以帮助企业在应用程序之间移动信息。例如,零售商可以使用StreamSets将销售日志从内部数据库转移到Snowflake环境中。
StreamSets支持多种数据传输方法。它可以在记录创建后实时将其流式传输到目标系统,也可以按设定的时间间隔分批发送。StreamSets还提供所谓的变更数据捕获工具,用于将存储在不同系统中的业务记录副本进行同步。
IBM从Software AG购买的另一款产品webMethods也是为类似的任务而设计的。它可以帮助公司在内部系统之间自动传输数据。2007年,Software AG以5.46亿美元的价格收购了最初开发 webMethods平台的公司,从而获得了webMethods。
这家软件制造商的网站显示,它正在开发一个名为webMethods AI的新版平台。据Software AG称,该产品允许用户创建集成,无需编写任何代码即可在应用程序之间移动数据。它还可以监控集成中的技术错误,并自动执行部分故障排除工作流程。
IBM表示,它将使用StreamSets和webMethods来扩展其watsonx产品套件的功能。watsonx 于今年 3 月推出,提供了企业用于构建人工智能模型的工具。它还包含了针对代码生成等任务进行了优化的预包装神经网络。
采用watsonx的公司可将人工智能模型使用的信息存储在名为watsonx.data的内置数据湖屋(data lakehouse)平台中。外部应用程序中的记录可通过一个名为ibm-lh的工具调入该平台。借助streamSets和webMethods带来的数据传输功能,IBM可以让企业更轻松地将计划用于人工智能项目的业务记录导入watsonx.data。
IBM软件高级副总裁兼首席商务官Rob Thomas表示:“与IBM的watsonx AI和数据平台以及应用现代化、数据结构和IT自动化产品相结合,StreamSets和webMethods将帮助客户释放其应用和数据的全部潜力。”
IBM预计将在2024年第二季度完成交易。在出售了StreamSets和webMethods之后,Software AG仍将继续在企业软件市场的多个细分领域占有一席之地。它提供了一个物联网设备的管理平台、一个名为 Adabas & Natural 的数据库,以及一个帮助企业更高效地执行日常业务的工具。
好文章,需要你的鼓励
在2026年CES展会上,一款名为Sweekar的AI电子宠物亮相,被誉为90年代经典Tamagotchi的完美继承者。这款智能宠物从蛋形开始,随着成长会物理性变大,经历婴儿期、青少年期到成年期的完整生命周期。每个阶段都有不同的护理需求和互动方式,从基础语言学习到形成独特个性。与原版相比,Sweekar融入了先进AI技术,提供更丰富的长期体验。该产品将通过Kickstarter众筹,售价150美元。
瑞士ETH苏黎世联邦理工学院等机构联合开发的WUSH技术,首次从数学理论层面推导出AI大模型量化压缩的最优解。该技术能根据数据特征自适应调整压缩策略,相比传统方法减少60-70%的压缩损失,实现接近零损失的模型压缩,为大模型在普通设备上的高效部署开辟了新路径。
西班牙CTIC RuralTech创新中心运用AI等前沿技术解决农业面临的气候变化等重大挑战。通过气候模拟系统和土地使用智能分析,农户可以监测作物、预测不同种植条件下的结果,如同拥有时光机器。草莓生产商利用模拟器预测疾病影响和气候变化效应,奶酪制造商则用AI分析牛奶数据,确定最适合生产特定奶酪的原料。这些技术应用大幅提高了农业可持续性和效率。
弗吉尼亚大学团队创建了Refer360数据集,这是首个大规模记录真实环境中人机多模态交互的数据库,涵盖室内外场景,包含1400万交互样本。同时开发的MuRes智能模块能让机器人像人类一样理解语言、手势和眼神的组合信息,显著提升了现有AI模型的理解准确度,为未来智能机器人的广泛应用奠定了重要基础。