IMDEA材料研究所和马德里科技大学(UPM)的研究人员已开发出一种创新的数字孪生技术,可以实时分析复合材料制造过程。
该突破性成果的论文题为《通过液态成型实现结构复合材料智能制造的数字孪生》(A digital twin for intelligent manufacturing of structural composites via liquid molding),发表在《国际先进制造技术杂志》(The International Journal of Advanced Manufacturing Technology)上。
论文的作者是 IMDEA 材料研究所研究人员Carlos González教授、Joaquín Fernández-León博士和Keayvan Keramati博士以及UPM的Luis Baumela博士。
作者在论文中提出了一种数字孪生技术,用于分析使用树脂传递模塑(RTM)的结构复合材料的制造过程。
论文的共同作者、IMDEA材料研究所结构复合材料研究小组负责人González教授表示,“据我所知,这是首个用于分析复合材料制造过程的数字孪生系统。”
数字孪生是一个物体、部件或系统的虚拟模型或表现形式,可以通过传感器实时更新数据,传感器可以置于物体本身或纳入到制造过程中。
例如,飞机部件或涡轮机可以配备各种传感器,用于监控关键功能区域。
这些传感器获得的数据可直接纳入虚拟模型,虚拟模型然后可根据接收到的信息进行模拟,以识别潜在的材料故障或性能问题。
不过,上述新设计的数字孪生系统与类似应用的不同之处在于,新设计的数字孪生侧重于复合材料制造过程本身,而不是仅限于对制造部件生产的后期分析。
这种主动能力可以实现实时优化和早期故障检测,标志着模拟辅助数字制造领域的重大进步。
González 教授表示,“我们在这篇文章中提出的数字孪生系统可以在整个制造过程中为制造商提供材料的实时图像。”
González 教授还表示,“这样就可以监控模具的填充情况、材料的多孔程度、是否存在孔洞等等。”
RTM 是液态复合材料成型 (LCM) 中的先进技术,其特点是能够以经济高效的方式生产具有降低空隙含量的高性能复合材料零件。
通过将RTM与数字孪生技术相结合的方法可以对注塑压力和固化时间等关键工艺参数进行实时监控和动态调整,从而显著提高最终产品质量和生产效率。
Fernández-León博士表示,“我们研究的下一步是开发先进的数字孪生技术,使操作员不仅能够详细监控生产过程,还能够直接干预并根据预测建模进行实时调整。”
Fernández-León博士接着表示,“例如,可以包括根据数字孪生的预测分析自动调整树脂注射压力或模具温度,防止缺陷形成,为高度优化的智能制造铺平道路。”
好文章,需要你的鼓励
Docker公司通过增强的compose框架和新基础设施工具,将自己定位为AI智能体开发的核心编排平台。该平台在compose规范中新增"models"元素,允许开发者在同一YAML文件中定义AI智能体、大语言模型和工具。支持LangGraph、CrewAI等多个AI框架,提供Docker Offload服务访问NVIDIA L4 GPU,并与谷歌云、微软Azure建立合作。通过MCP网关提供企业级安全隔离,解决了企业AI项目从概念验证到生产部署的断层问题。
中科院联合字节跳动开发全新AI评测基准TreeBench,揭示当前最先进模型在复杂视觉推理上的重大缺陷。即使OpenAI o3也仅获得54.87%分数。研究团队同时提出TreeVGR训练方法,通过要求AI同时给出答案和精确定位,实现真正可追溯的视觉推理,为构建更透明可信的AI系统开辟新路径。
马斯克的AI女友"Ani"引爆全球,腾讯RLVER框架突破情感理解边界:AI下半场竞争核心已转向对人性的精准把握。当技术学会共情,虚拟陪伴不再停留于脚本应答,而是通过"心与心的循环"真正理解人类孤独——这背后是强化学习算法与思考模式的化学反应,让AI从解决问题转向拥抱情感。
PyVision是上海AI实验室开发的革命性视觉推理框架,让AI系统能够根据具体问题动态创造Python工具,而非依赖预设工具集。通过多轮交互机制,PyVision在多项基准测试中实现显著性能提升,其中在符号视觉任务上提升达31.1%。该框架展现了从"工具使用者"到"工具创造者"的AI能力跃迁,为通用人工智能的发展开辟了新路径。