梅赛德斯-奔驰(Mercedes-Benz)和西门子(Siemens)共同开发了数字能源孪生系统,帮助这家汽车巨头以可持续的方式运营旗下所有工厂。
奔驰希望到2039年,旗下所有生产基地都能100%使用可再生能源。双方表示,数字能源孪生系统可增强、简化并加快棕地和绿地工厂早期阶段的能源规划流程。
该孪生系统(基于西门子的Xcelerator开放数字业务平台)以建筑物、技术设备和能源生产的行为模型为基础,在德国辛德尔芬根的梅赛德斯-奔驰工厂设计并测试。
该孪生系统连接了气象数据、负荷曲线模拟、建筑资产选择和尺寸确定等输入。通过模拟物理能源系统,它可以验证所提出的能源使用规划方案,并就如何优化预期成果(包括能源效率和相关成本节约以及减排)提出建议。
西门子将提供培训和支持,维护并持续开发数字能源孪生系统。
西门子与梅赛德斯-奔驰于2021年建立了可持续汽车生产战略合作伙伴关系,双方将在推进可持续生产数字化方面开展合作。
梅赛德斯-奔驰汽车公司生产规划副总裁Arno van der Merwe表示:“数字能源孪生系统是我们成功实现可视化、分析和可持续优化节能建筑流程的答案。通过这种创新方法,我们可以更好地了解现有厂房,并将其改造成有生命力的智能建筑。得益于这项变革性技术,我们正在最大限度地发挥它们的潜力,并为梅赛德斯-奔驰全球生产网络中的节能和可持续建筑使用设定前瞻性标准。”
西门子还为一家不具名的全球饮料供应商开发了类似的孪生技术。双方正在使用该孪生系统模拟能源使用情况,并确定全球15家啤酒厂的节能情况。据西门子估计,每个生产基地可节约15%至20%的能耗,平均每个生产基地可减少50%的二氧化碳排放量。
好文章,需要你的鼓励
尽管全球企业AI投资在2024年达到2523亿美元,但MIT研究显示95%的企业仍未从生成式AI投资中获得回报。专家预测2026年将成为转折点,企业将从试点阶段转向实际部署。关键在于CEO精准识别高影响领域,推进AI代理技术应用,并加强员工AI能力培训。Forrester预测30%大型企业将实施强制AI培训,而Gartner预计到2028年15%日常工作决策将由AI自主完成。
这项由北京大学等机构联合完成的研究,开发了名为GraphLocator的智能软件问题诊断系统,通过构建代码依赖图和因果问题图,能够像医生诊断疾病一样精确定位软件问题的根源。在三个大型数据集的测试中,该系统比现有方法平均提高了19.49%的召回率和11.89%的精确率,特别在处理复杂的跨模块问题时表现优异,为软件维护效率的提升开辟了新路径。
2026年软件行业将迎来定价模式的根本性变革,从传统按席位收费转向基于结果的付费模式。AI正在重塑整个软件经济学,企业IT预算的12-15%已投入AI领域。这一转变要求建立明确的成功衡量指标,如Zendesk以"自动化解决方案"为标准。未来将出现更精简的工程团队,80%的工程师需要为AI驱动的角色提升技能,同时需要重新设计软件开发和部署流程以适应AI优先的工作流程。
这项由德国达姆施塔特工业大学领导的国际研究团队首次发现,当前最先进的专家混合模型AI系统存在严重安全漏洞。通过开发GateBreaker攻击框架,研究人员证明仅需关闭约3%的特定神经元,就能让AI的攻击成功率从7.4%暴增至64.9%。该研究揭示了专家混合模型安全机制过度集中的根本缺陷,为AI安全领域敲响了警钟。