梅赛德斯-奔驰(Mercedes-Benz)和西门子(Siemens)共同开发了数字能源孪生系统,帮助这家汽车巨头以可持续的方式运营旗下所有工厂。
奔驰希望到2039年,旗下所有生产基地都能100%使用可再生能源。双方表示,数字能源孪生系统可增强、简化并加快棕地和绿地工厂早期阶段的能源规划流程。
该孪生系统(基于西门子的Xcelerator开放数字业务平台)以建筑物、技术设备和能源生产的行为模型为基础,在德国辛德尔芬根的梅赛德斯-奔驰工厂设计并测试。
该孪生系统连接了气象数据、负荷曲线模拟、建筑资产选择和尺寸确定等输入。通过模拟物理能源系统,它可以验证所提出的能源使用规划方案,并就如何优化预期成果(包括能源效率和相关成本节约以及减排)提出建议。
西门子将提供培训和支持,维护并持续开发数字能源孪生系统。
西门子与梅赛德斯-奔驰于2021年建立了可持续汽车生产战略合作伙伴关系,双方将在推进可持续生产数字化方面开展合作。
梅赛德斯-奔驰汽车公司生产规划副总裁Arno van der Merwe表示:“数字能源孪生系统是我们成功实现可视化、分析和可持续优化节能建筑流程的答案。通过这种创新方法,我们可以更好地了解现有厂房,并将其改造成有生命力的智能建筑。得益于这项变革性技术,我们正在最大限度地发挥它们的潜力,并为梅赛德斯-奔驰全球生产网络中的节能和可持续建筑使用设定前瞻性标准。”
西门子还为一家不具名的全球饮料供应商开发了类似的孪生技术。双方正在使用该孪生系统模拟能源使用情况,并确定全球15家啤酒厂的节能情况。据西门子估计,每个生产基地可节约15%至20%的能耗,平均每个生产基地可减少50%的二氧化碳排放量。
好文章,需要你的鼓励
浙江大学研究团队开发了ContextGen,这是首个能够同时精确控制多个对象位置和外观的AI图像生成系统。该系统通过情境布局锚定和身份一致性注意力两大创新机制,解决了传统AI在多对象场景中位置控制不准确和身份保持困难的问题,并创建了业界首个10万样本的专业训练数据集,在多项测试中超越现有技术。
上海交通大学研究团队开发的SR-Scientist系统实现了人工智能在科学发现领域的重大突破。该系统能够像真正的科学家一样,从实验数据中自主发现数学公式,通过工具驱动的数据分析和长期优化机制,在四个科学领域的测试中比现有方法提高了6%-35%的精确度。这标志着AI从被动工具转变为主动科学发现者的重要里程碑。