梅赛德斯-奔驰(Mercedes-Benz)和西门子(Siemens)共同开发了数字能源孪生系统,帮助这家汽车巨头以可持续的方式运营旗下所有工厂。
奔驰希望到2039年,旗下所有生产基地都能100%使用可再生能源。双方表示,数字能源孪生系统可增强、简化并加快棕地和绿地工厂早期阶段的能源规划流程。
该孪生系统(基于西门子的Xcelerator开放数字业务平台)以建筑物、技术设备和能源生产的行为模型为基础,在德国辛德尔芬根的梅赛德斯-奔驰工厂设计并测试。
该孪生系统连接了气象数据、负荷曲线模拟、建筑资产选择和尺寸确定等输入。通过模拟物理能源系统,它可以验证所提出的能源使用规划方案,并就如何优化预期成果(包括能源效率和相关成本节约以及减排)提出建议。
西门子将提供培训和支持,维护并持续开发数字能源孪生系统。
西门子与梅赛德斯-奔驰于2021年建立了可持续汽车生产战略合作伙伴关系,双方将在推进可持续生产数字化方面开展合作。
梅赛德斯-奔驰汽车公司生产规划副总裁Arno van der Merwe表示:“数字能源孪生系统是我们成功实现可视化、分析和可持续优化节能建筑流程的答案。通过这种创新方法,我们可以更好地了解现有厂房,并将其改造成有生命力的智能建筑。得益于这项变革性技术,我们正在最大限度地发挥它们的潜力,并为梅赛德斯-奔驰全球生产网络中的节能和可持续建筑使用设定前瞻性标准。”
西门子还为一家不具名的全球饮料供应商开发了类似的孪生技术。双方正在使用该孪生系统模拟能源使用情况,并确定全球15家啤酒厂的节能情况。据西门子估计,每个生产基地可节约15%至20%的能耗,平均每个生产基地可减少50%的二氧化碳排放量。
好文章,需要你的鼓励
文章详细介绍了Character.AI这款主要面向娱乐、角色扮演和互动叙事的AI聊天工具的原理、用户群体、特色功能以及面临的法律与伦理争议,同时揭示了其新推出的视频和游戏互动体验。
上海人工智能实验室研究团队开发了MMSI-Bench,这是首个专注于多图像空间智能评估的全面基准。研究人员花费300多小时,从12万张图像中精心构建了1000道问题,涵盖了位置关系、属性和运动等多种空间推理任务。评测结果显示,即使最先进的AI模型也仅达到41%的准确率,远低于人类的97%,揭示了AI空间认知能力的重大缺陷。研究还识别了四类主要错误:物体识别错误、场景重建错误、情境转换错误和空间逻辑错误,为未来改进提供了明确方向。
思科报告指出,自主型人工智能未来三年内有望承担高达68%的客户服务任务,通过个性化与前瞻性支持提升效率与节省成本,但用户仍重视人与人之间的互动和健全的治理机制。
卡内基梅隆大学研究团队开发了ViGoRL系统,通过视觉定位强化学习显著提升AI的视觉推理能力。该方法让模型将每个推理步骤明确锚定到图像的特定坐标,模拟人类注视点转移的认知过程。与传统方法相比,ViGoRL在SAT-2、BLINK等多项视觉理解基准上取得显著提升,并能动态放大关注区域进行细节分析。这种定位推理不仅提高了准确性,还增强了模型解释性,为更透明的AI视觉系统铺平道路。