计算机科学研究人员开发出一种新方法,能够在用户需求实际出现之前以无线方式预测他们需要哪些数据,借此提升无线网络的传输带宽和可靠性。这种新方法采用的正是数字孪生技术,能够有效克隆其负责支持的目标网络。
达成目标的关键,在于如何实现边缘缓存。
缓存是指将数据存储在系统或者网络认为用户将在短时间内使用的服务器上。如此一来,系统就能比从原始来源处检索数据更快地满足用户需求。而边缘缓存则强调系统将数据缓存在最靠近最终用户的服务器当中,例如集成至网络路由器中或者与这些路由器共置部署的计算设备。
这篇论文的通讯作者、北卡罗来纳州立大学计算机科学助理教授Yuchen Liu表示,“这项工作中的两大挑战,分别是确定哪些数据需要缓存,以及边缘服务器在任意给定时间点上应该存储多少数据。”
“系统不可能将所有内容都放入边缘缓存当中。如果数据占用了太多计算资源,那么在边缘服务器上存储过多的冗余数据就会降低服务器的速度。因此,系统需要不断决定存储哪些数据包,以及哪些数据包可以丢弃。”
刘教授解释称,“系统对于用户实际需要的数据内容以及边缘服务器应当存储多少数据的预测结果越准确,系统的整体性能就会越好。而我们在这里的工作重点,就在于如何改进这种预测效果。”
他们提出的新边缘缓存优化方法名为D-REC,其中利用了数字孪生技术,数字孪生是根据真实对象构建的虚拟模型。以D-REC为例,数字孪生负责在其中定义无线网络的虚拟模型——包括蜂窝网络以及Wi-Fi网络。
刘教授指出,“这种方法可以应用于任何无线网络,具体取决于系统管理员或者网络运营商的需求。D-REC还可根据用户的需求进行调整。”
在D-REC当中,数字孪生会从无线网络处获取实时数据,并利用这些数据进行模拟,预测用户最有可能请求哪些数据。之后,这些预测将会被发送回网络,以告知网络的边缘缓存决策。由于模拟是由网络外部的计算机所执行,因此整个过程不会降低网络性能。
研究人员使用开源数据集来确定无线网络在使用D-REC的情况下,是否能够运行得更加高效。研究人员为此开展了广泛实验,并在其中引入一系列变量,包括网络规模、网络上的用户数量等等。
刘教授表示,“D-REC的表现优于传统方法。我们的技术提高了网络准确预测哪些数据应当进入边缘缓存的能力。D-REC还能帮助系统更好地对整个网络中的数据存储加以平衡。”
此外,由于D-REC的数字孪生会专注于预测网络行为,因此也能提前识别出各种潜在问题。
“举例来说,如果数字孪生认为某个特定基站或者服务器很可能超载,则可以提前通知网络,并允许其在网络当中重新分配数据,借此保持网络具有良好的性能和可靠性。”
“目前我们正极寻求与网络运营商的合作,希望探索D-REC技术如何在现实场景下提高网络的性能与可靠性。”
他们的论文《数字孪生辅助的数据驱动优化:实现无线网络中的可靠边缘缓存》(Digital Twin-Assisted Data-Driven Optimization for Reliable Edge Caching in Wireless Networks)已经发表在《IEEE通讯选定领域杂志》上。
好文章,需要你的鼓励
Dell技术团队在构建笔记本电脑物理损伤识别模型时,遭遇了AI幻觉、垃圾图像检测和输出不稳定等问题。项目从单体提示开始,尝试了多模态方法,最终创新性地将智能体框架应用于图像解释任务。通过组合精确的智能体检测、广泛的单体扫描和针对性微调,构建了可靠的混合系统,显著减少了幻觉问题并提高了检测准确性。
北航团队发布AnimaX技术,能够根据文字描述让静态3D模型自动生成动画。该系统支持人形角色、动物、家具等各类模型,仅需6分钟即可完成高质量动画生成,效率远超传统方法。通过多视角视频-姿态联合扩散模型,AnimaX有效结合了视频AI的运动理解能力与骨骼动画的精确控制,在16万动画序列数据集上训练后展现出卓越性能。
企业在关键应用中部署AI代理人面临挑战,Mixus平台推出"同事在环"模式应对。研究显示当前AI代理人单步任务成功率仅58%,多步任务仅35%。该模式将人工监督嵌入自动化工作流程,对高风险决策要求人工审批。通过整合Google Drive、Slack等工具,让AI处理90-95%常规任务,人工专注于5-10%的关键决策,实现效率与可靠性平衡。
这项研究解决了AI图片描述中的两大难题:描述不平衡和内容虚构。通过创新的"侦探式追问"方法,让AI能生成更详细准确的图片描述,显著提升了多个AI系统的性能表现,为无障碍技术、教育、电商等领域带来实用价值。