在2024赛季即将到来之际,美国国家橄榄球联盟和亚马逊云科技(Amazon Web Services Inc.)继续推动人工智能和机器学习在橄榄球领域的应用。通过2017年开始的合作,美国橄榄球联盟已利用 AWS技术提高了球员表现分析、比赛策略和球迷体验。
即将到来的NFL比赛将展示一种新的人工智能工具Tackle Probability(擒抱概率),该工具可实时分析和预测后卫进行擒抱的可能性。该工具能识别最可靠的后卫和最难抓的持球人。它还能提供关键表现指标的数据,如失误的擒抱和成功的擒抱,为球队的进攻和防守策略提供有价值的见解。
更具体地说,Tackle Probability每1/10秒就会检查20个不同的因子,包括每个后卫的位置和速度。利用这些数据点,一个根据过去五年比赛数据训练的人工智能模型会计算出在比赛中任何特定时刻发生擒抱的可能性。根据这些数据,该模型会创建新的统计数据,如后卫尝试擒抱而不失误的频率,或跑锋迫使擒抱失误的频率。这有助于教练了解哪些球员在擒抱或躲避擒抱方面最可靠。
Tackle Probability是NFL球员和球追踪平台Next Gen Stats的一项功能,该平台主要依靠 AWS处理从比赛中收集的大量数据。该平台每个赛季收集超过5亿个数据点,为NFL提供先进的统计数据,改善观看体验并帮助做出比赛决策。这包括规则的改变,如新的动态开球,通过调整球员的位置和移动,最大限度地减少开球过程中的高速碰撞和伤害。
Digital Athlete(数字运动员)是利用AWS开发的另一款工具,旨在提高球员的安全性。该工具模拟比赛和训练场景,帮助教练和医务人员评估受伤风险,这样他们就可以为每位球员制定预防和恢复计划。我们可以把这想象成建立一个球员的数字孪生体,然后让他们经历各种场景,从而更好地了解受伤发生的时间和方式。球队可以利用这些数据来避免这些情况,让球员在场上的时间更长。
除了提高球员的安全性,AWS还与NFL Media合作实施Amazon Q Business,这是一款人工智能助手,可以回答业务和生产相关的问题。它就像一个自动服务台,可以回答常见的技术或操作问题。NFL Media还推出了一款由亚马逊云科技Bedrock支持的研究工具,允许制作团队使用简单的语言提示从NFL的Next Gen Stats数据库里的特定比赛中收集见解和片段。
NFL相信,通过自动化日常任务和加快研究速度,这些开发将提高工作效率。团队不必再把时间花在重复性的活动上,而是可以集中精力在NFL Media的各个频道上创建高质量的内容,如NFL Network、NFL Films、NFL.com、NFL+、NFL应用程序和社交媒体渠道。
包括Tackle Probability在内的许多创新的灵感来自于AWS Big Data Bowl(大数据杯)的参赛创意,该项目创建于五年前,旨在为NFL的Next Gen Stats开发新的使用方法。该计划为工程师、数据科学家、学生和其他没有体育经验的人创建了一个开放的平台,让他们参与到橄榄球分析中来。
该竞赛自2019年启动以来已增长了四倍,去年有400名参赛者提交了230多份作品,而在竞赛创办以来的5个年头里,参赛者超过了75个国家。通过实现数据访问的民主化,NFL和AWS可以加速创造和创新。自Big Data Bowl举办以来,已有50多名参与者在专业体育分析领域找到了工作,其中30多人被 NFL球队或球员跟踪供应商聘用。
体育联盟拥有丰富的数据,其中许多数据几十年来一直未被开发利用。找到了解数据和相关体育运动的专家以获取价值是一项挑战。生成式人工智能使任何人,无论是否具有数据科学或体育背景,都能找到利用这些数据的新方法,从而实现运营价值并创造新的球迷体验。
好文章,需要你的鼓励
上海交通大学研究团队开发出革命性AI癌症诊断系统,通过深度学习技术分析50万张细胞图像,实现94.2%的诊断准确率,诊断时间从30分钟缩短至2分钟。该系统不仅能识别多种癌症类型,还具备解释性功能,已在多家医院试点应用。研究成果发表于《Nature Communications》,展示了AI在精准医疗领域的巨大潜力。
南华理工大学等机构提出3DFlowAction方法,让机器人通过预测物体3D运动轨迹来学习操作技能。该研究创建了包含11万个实例的ManiFlow-110k数据集,构建了能预测三维光流的世界模型,实现了跨机器人平台的技能迁移。在四个复杂操作任务上成功率达70%,无需特定硬件训练即可在不同机器人上部署,为通用机器人操作技术发展开辟新路径。
这是首个系统性探索跨视角协作智能的综合性研究,由南京大学、东京大学等顶尖机构联合完成。研究团队首次将"第一人称视角"与"第三人称视角"的协作应用进行了全面梳理,提出了三大技术方向和十三个关键任务,涵盖从智能厨房到手术机器人的八大应用场景。这项突破性工作为人工智能向人类认知迈进提供了重要的技术路径和理论基础。
这项由台湾大学与微软研究团队合作的研究探索了使用音频感知大语言模型(ALLMs)作为自动评判员来评估语音生成模型的说话风格。研究设计了"语音风格指令跟随"和"角色扮演"两个任务,测试了四种语音模型的表现,并比较了人类与AI评判的一致性。结果表明,特别是Gemini-2.5-pro模型,其评判结果与人类评判的一致性甚至超过了人类评判者之间的一致性,证明ALLMs可以作为可靠的自动评估工具。同时研究也发现,即使是最先进的语音模型在说话风格控制方面仍有显著改进空间。