Cohere Inc. 今日推出了 North,这是一款旨在让企业员工更便捷地使用其人工智能模型的新产品。
公司将这款产品描述为"安全的 AI 工作平台",目前通过早期访问计划提供服务。
总部位于多伦多的 Cohere 开发了一系列名为 Command 的大语言模型。与 OpenAI 不同,该公司并不提供面向消费者的聊天机器人服务,而是专注于企业市场。在去年 7 月完成 5 亿美元融资后,Cohere 的估值达到了 55 亿美元。
作为公司的新产品,North 提供了一个聊天机器人界面,让客户能够与其 Command 大语言模型系列进行交互。员工可以使用该工具分析财务报告、查找文档以及执行其他商务任务。North 不仅可以在回应中包含文本,还能包含图表等其他数据。
用户可以通过创建 AI 代理来定制 North,这些 AI 程序针对特定任务进行了优化。例如,人力资源专员可以构建一个代理来自动化部分新员工入职工作。Cohere 表示,创建 AI 代理只需要点击几下,无需编程专业知识。
在内部评估中,公司将 North 与 Microsoft Copilot 和 Google Vertex AI Agent Builder 在金融、人力资源、客户支持和 IT 任务方面进行了对比。Cohere 表示其产品在所有四个类别中都优于竞争对手。测试使用了名为 Llama Index 的基准,只要 AI 生成的答案"至少相关且正确"即可接受。
在技术层面,North 不仅由 Command 驱动,还搭载了 Cohere 的 Compass 产品。后者是一个 AI 驱动的搜索工具,可以在公司系统中查找特定数据片段,并使其可供 AI 模型使用。它不仅可以从文档中提取数据,还能处理幻灯片、图片和电子表格等多模态文件。
Compass 基于两个 AI 模型。第一个是 Embed,它将数据转换为嵌入向量,这种数学表示方式使 AI 模型比处理原始商业文档更容易处理。另一个模型是 Rerank,它分析用户查询返回的信息,并对最相关的项目进行优先排序。
据 Cohere 介绍,North 可以在云端和本地部署。它能够在气隙环境中运行,即出于网络安全考虑与公司其他网络和互联网隔离的环境。这可能使高度监管行业的组织更容易采用 North。
Cohere 创始人兼首席执行官 Aidan Gomez 在博客文章中写道:"当前的自建式 AI 部署方式给组织带来了巨大负担,需要投入时间、专业知识和资源来开发定制解决方案并维护它们。North 帮助避免这些痛点,缩短了客户的价值实现时间。"
Cohere 表示,加拿大皇家银行是使用 North 的早期客户之一。据该大语言模型提供商称,他们将与该银行合作开发针对金融行业优化的软件版本。这表明 Cohere 未来可能会推出更多针对特定行业的版本。
North 的推出大约发生在 OpenAI 推出 canvas 两个月之后,后者是 ChatGPT 的一个面向生产力的界面。该功能主要针对写作和编程任务,包含一个大型界面面板,用于显示用户的代码或文本,以及 AI 生成的编辑建议。
图片来源:Cohere
好文章,需要你的鼓励
随着AI广泛应用推动数据中心建设热潮,运营商面临可持续发展挑战。2024年底美国已建成或批准1240个数据中心,能耗激增引发争议。除能源问题外,服务器和GPU更新换代产生的电子废物同样严重。通过采用模块化可修复系统、AI驱动资产跟踪、标准化数据清理技术以及与认证ITAD合作伙伴合作,数据中心可实现循环经济模式,在确保数据安全的同时减少环境影响。
剑桥大学研究团队首次系统探索AI在多轮对话中的信心判断问题。研究发现当前AI系统在评估自己答案可靠性方面存在严重缺陷,容易被对话长度而非信息质量误导。团队提出P(SUFFICIENT)等新方法,但整体问题仍待解决。该研究为AI在医疗、法律等关键领域的安全应用提供重要指导,强调了开发更可信AI系统的紧迫性。
超大规模云数据中心是数字经济的支柱,2026年将继续保持核心地位。AWS、微软、谷歌、Meta、甲骨文和阿里巴巴等主要运营商正积极扩张以满足AI和云服务需求激增,预计2026年资本支出将超过6000亿美元。然而增长受到电力供应、设备交付和当地阻力制约。截至2025年末,全球运营中的超大规模数据中心达1297个,总容量预计在12个季度内翻倍。
威斯康星大学研究团队开发出Prithvi-CAFE洪水监测系统,通过"双视觉协作"机制解决了AI地理基础模型在洪水识别上的局限性。该系统巧妙融合全局理解和局部细节能力,在国际标准数据集上创造最佳成绩,参数效率提升93%,为全球洪水预警和防灾减灾提供了更准确可靠的技术方案。