估值超过 40 亿美元的 AI 初创公司 Hugging Face 推出了 FastRTC,这是一个开源 Python 库,旨在消除开发者在构建实时音频和视频 AI 应用时的主要障碍。
"在 Python 中正确构建实时 WebRTC 和 Websocket 应用一直都很困难,"FastRTC 的创建者之一 Freddy Boulton 在 X.com 上宣布。"直到现在。"
WebRTC 技术使浏览器之间可以直接进行音频、视频和数据共享,无需插件或下载。尽管这项技术对现代语音助手和视频工具来说至关重要,但实现 WebRTC 仍然需要大多数机器学习 (ML) 工程师所不具备的专业技能。
语音 AI 热潮遇到技术瓶颈
时机再合适不过。语音 AI 已经吸引了巨大的关注和资本投入——ElevenLabs 最近获得了 1.8 亿美元的融资,而 Kyutai、Alibaba 和 Fixie.ai 等公司都发布了专门的音频模型。
然而,这些复杂的 AI 模型与将其部署到响应式实时应用所需的技术基础设施之间仍存在脱节。正如 Hugging Face 在其博客文章中指出的:"ML 工程师可能缺乏构建实时应用所需技术的经验,比如 WebRTC。"
FastRTC 通过自动化功能处理实时通信的复杂部分来解决这个问题。该库提供了语音检测、轮流发言功能、测试界面,甚至还能生成临时电话号码用于应用访问。
从复杂基础设施到五行代码
该库的主要优势在于其简单性。据报道,开发者只需几行代码就能创建基本的实时音频应用——这与之前需要数周开发工作形成鲜明对比。
这种转变对企业有重大影响。之前需要专门通信工程师的公司现在可以让现有的 Python 开发者构建语音和视频 AI 功能。
"你可以使用任何大语言模型/文本转语音/语音转文本 API,甚至是语音到语音模型,"公告解释道。"带上你喜欢的工具——FastRTC 只负责处理实时通信层。"
语音和视频创新的新浪潮
FastRTC 的推出标志着 AI 应用开发的一个转折点。通过消除重要的技术障碍,该工具开启了许多开发者之前只能停留在理论层面的可能性。
对小型公司和独立开发者来说,其影响可能特别有意义。虽然像 Google 和 OpenAI 这样的科技巨头有工程资源构建定制的实时通信基础设施,但大多数组织并不具备这种条件。FastRTC 本质上提供了以前只有专业团队才能获得的功能。
该库的"食谱"已经展示了多样化的应用:由各种语言模型驱动的语音聊天、实时视频对象检测和通过语音命令进行交互式代码生成。
特别值得注意的是其发布时机。FastRTC 的出现恰逢 AI 界面从基于文本的交互转向更自然、多模态体验之际。今天最先进的 AI 系统可以处理和生成文本、图像、音频和视频,但在响应式实时应用中部署这些功能仍然具有挑战性。
通过弥合 AI 模型和实时通信之间的差距,FastRTC 不仅使开发变得更容易,还可能加速向更人性化、更少计算机感的语音优先和视频增强型 AI 体验的转变。
对用户来说,这意味着各种应用都能提供更自然的界面。对企业来说,这意味着可以更快地实现客户日益期待的功能。
最终,FastRTC 解决了技术领域的一个经典问题:强大的功能往往在成为主流开发者可访问之前都无法得到充分利用。通过简化曾经复杂的事物,Hugging Face 消除了当今复杂 AI 模型与未来语音优先应用之间的最后一个主要障碍。
好文章,需要你的鼓励
邻里社交应用Nextdoor推出重新设计版本,新增本地新闻、实时警报和名为"Faves"的AI功能,用于发现本地商户和地点。该应用与3500家本地出版商合作提供新闻内容,通过Samdesk和Weather.com提供天气、交通、停电等实时警报。Faves功能利用15年邻里对话数据训练的大语言模型,为用户提供本地化AI推荐服务,帮助用户找到最佳餐厅、徒步地点等本地信息。
Skywork AI推出的第二代多模态推理模型R1V2,通过创新的混合强化学习方法,成功解决了AI"慢思考"策略在视觉推理中的挑战。该模型在保持强大推理能力的同时有效控制视觉幻觉,在多项权威测试中超越同类开源模型,某些指标甚至媲美商业产品,为开源AI发展树立了新标杆。
英国生物银行完成了世界上最大规模的全身成像项目,收集了10万名志愿者的超过10亿次扫描数据,用于研究人体衰老和疾病过程。该项目历时11年,每次扫描耗时5小时,投资6200万英镑。目前已有8万人的成像数据供全球研究人员使用,剩余数据将于年底前发布。项目已开发出能预测38种常见疾病的AI工具,并在心脏病、痴呆症和癌症诊断方面取得突破。
这项由北京大学等多所高校联合完成的研究,首次对OpenAI GPT-4o的图像生成能力进行了全面评估。研究团队设计了名为GPT-ImgEval的综合测试体系,从文本转图像、图像编辑和知识驱动创作三个维度评估GPT-4o,发现其在所有测试中都显著超越现有方法。研究还通过技术分析推断GPT-4o采用了自回归与扩散相结合的混合架构,并发现其生成图像仍可被现有检测工具有效识别,为AI图像生成领域提供了重要的评估基准和技术洞察。