在 2020 年代,你可能已经忘记还存在着本地聊天客户端这样的东西,但实际上仍有少数几个在运行,而且依然很有用。其中之一就是 Pidgin,这个曾经被称为 GAIM 的软件。
它仍然存在,并且能够支持数量惊人的协议。在当前第二个 alpha 版本之后,Pidgin 3 很快就要到来了。不过,这个版本的开发时间确实很长 —— 这个项目已经进行了大约 16 年。
项目负责人 Gary Kramlich 在去年 11 月宣布了新版本。随后在 2025 年第一天发布了第一个预览版本,版本号为 2.90。本月初,第二个预览版本发布,初步版本号为 2.91。
Pidgin 3 已经很接近最终版本,但目前支持的通讯协议还不多。
让我们来谈谈本地聊天客户端及其重要性。现在大多数聊天和消息服务都是网页应用,仅仅是一堆 Javascript 代码:虽然技术上它们在你的 CPU 上运行,但你的消息都存储在云端某处 —— 服务只是让你查看这些消息,而不是保存它们。更糟糕的是,这些 Javascript 代码通常经过压缩和混淆变得难以阅读,而且可能还是专有的。
聊天频道中的讨论通常是组织知识库的重要组成部分。想要保存这些内容、存入数据库、建立索引并进行搜索是完全合理的需求。也许你只是想使用自己的界面来访问服务。但如果是某个 SaaS 服务,这些都做不到。
诚然,有很多基于网页的多协议客户端,我们之前也写过相关文章。自从 Franz 和 Ferdi 停止更新后,Reg FOSS 团队一直在日常使用 Ferdium。这类应用确实很方便,但它们有几个缺点:每个标签页都有不同的界面,而且内存占用惊人 —— 别想用 8GB 内存的机器运行 —— 当然,你的消息仍然不属于你:它们存储在云端某处。
Pidgin 是一个本地的(即非网页based)多协议聊天客户端。它最初是作为 AOL Instant Messenger (简称 AIM) 的 GNU 客户端开发的,所以被称为 gAIM。随着时间推移,它逐渐支持了各种其他服务,包括 Skype、ICQ、Facebook Messenger 等专有服务,以及基于开放标准的 Jabber 和 IRC。2007 年发布的 2.0 版本将名称改为 Pidgin。
Pidgin 2 仍在维护:2.14 版本于 2020 年发布,之后又有 13 个小版本更新。它有令人印象深刻的"可信"插件列表 —— 我们统计有 239 个 —— 以及更多第三方插件。公平地说,并非所有插件都用于连接不同的聊天服务,但很多都是:我们统计有 65 个额外的第三方协议。它几乎可以与所有服务对话,从 Amazon Chime 到 Discord,从 Facebook 到 Signal,再到 WhatsApp。
更重要的是,Pidgin 强大的多语言能力通过其底层通信层 libpurple 可供其他应用使用。遗憾的是,随着基于网页的消息系统的兴起,大多数应用都已经很久没有维护了,但 Finch 是面向 Linux shell 用户的文本模式客户端,而 Adium 是原生 macOS 客户端。
然而,尽管可扩展,Pidgin 2.x 仍然在其代码树中包含了 AIM 和其他一些已经消失的服务的协议。(如果你怀念这些服务,Nina 项目正在复活 AIM、ICQ、Yahoo 和 MSN。)移除这些意味着需要完全重写,经过多年的逐步工作,团队的努力终于开始显现成果。
无论如何,我们希望安全性能得到重视,因为消息或协议处理程序中的漏洞可能导致代码执行,这意味着世界另一端的人可能通过向你发送消息来接管你的设备。所有软件都有 bug,很多都存在这样的缺陷,Pidgin 过去也不例外。
Pidgin 3 将原生使用 GTK4,目前这个初步版本只支持 IRCv3。虽然还处于早期阶段,但今年已经发布了两个版本,表明正在取得重要进展。实验性构建版本可在 Flathub beta 上获取。
好文章,需要你的鼓励
随着AI技术不断发展,交通运输行业正迎来重大变革。MIT研究显示,AI将很快自动化价值650亿美元的交通工作,大幅提升运输效率。从陆地到海空,AI正在推动全方位的交通创新。斯坦福专家强调,AI将通过基础模型、合成数据和数字孪生等技术,实现从单一车辆自动化到整个交通网络优化的跨越式发展,同时解决可持续性、安全性和公平性等关键挑战。
香港科技大学团队发表重要研究,开发GIR-Bench测试基准评估统一多模态AI模型的推理与生成能力。研究发现即使最先进的AI模型在理解与生成之间也存在显著差距,无法有效将推理过程转化为准确的视觉生成,为AI行业发展提供重要警示。
波兰研究团队开发ORCA数学基准测试,对五个主流大语言模型进行评估。结果显示ChatGPT-5、Gemini 2.5 Flash、Claude Sonnet 4.5、Grok 4和DeepSeek V3.2的准确率均低于63%。测试涵盖生物化学、工程建筑、金融经济等七个领域的500道数学题目。研究发现模型主要在四舍五入和计算错误方面存在问题,表明自然语言推理进步并未直接转化为可靠的计算能力。
Meta超级智能实验室联合麻省理工学院开发了SPG三明治策略梯度方法,专门解决扩散语言模型强化学习训练中的技术难题。该方法通过上下界策略为AI模型提供精确的奖惩反馈机制,在数学和逻辑推理任务上实现了显著性能提升,为AI写作助手的智能化发展提供了新的技术路径。