近日,国际关联数据基准委员会(Linked Data Benchmark Council,以下简称LDBC)公布了SNB Interactive评测基准声明式查询赛道最新结果,阿里云GraphScope Flex突破图计算引擎性能天花板,以超过80,000 QPS(每秒查询数)的吞吐性能打破纪录,是第二名的近2倍。
阿里云GraphScope Flex打破SNB Interactive评测基准声明式查询赛道纪录
图计算引擎在处理海量关系数据上具备天然优势,能够提高实时推荐的效率和准确性。以金融风控场景为例,大量人员和事件构成一张庞大的图关系网,通过图上关联分析,可以快速挖掘异常行为,识别异常人员和群体,及时避免风险。
LDBC是图数据与图计算领域的国际权威组织,其推出的Social Network Benchmark (SNB) 评测基准通过模拟 Facebook 社交网络图,覆盖增删改查、最短路径、多跳查询等操作,全面衡量图引擎的功能和性能,是学术界和工业界公认的权威评测标准。该评测基准支持两种实现方式,一是命令式,需依赖图专家用编程语言手动编写和调优查询用例,GraphScope Flex已是该场景的性能纪录保持者;二是声明式,使用图查询语言如 Cypher 编写查询用例,由系统自动优化。
最新测试结果显示,在SNB扩展参数为300的声明式查询场景测试中,GraphScope Flex通过自动查询优化实现了高达80510 QPS的查询吞吐率,性能较第二名提升近1倍,甚至超越了业界手动编写和调优的命令式场景的成绩,这一突破提升了图引擎的性能天花板,大幅降低了图查询的技术门槛。
GraphScope Flex性能的提升得益于阿里云在工程和技术上的协同创新,在基础设施层,通过计算、存储和调度层的全面优化,可实现低延迟内存访问和高吞吐查询等能力;在查询层,通过自研的GOpt优化框架,利用高阶统计信息提高基数估计准确性,可有效减少查询中间结果并提升执行效率,该研究成果已被数据库顶会 SIGMOD 2025收录。
据悉,GraphScope是业界首个开源的一站式大规模图计算引擎,目前已广泛应用于金融风控、网络安全及社交网络分析等领域。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。