随着AI系统从独立模型向自主、代理式系统转型,对信任、透明度和风险感知设计的需求从未如此迫切。这些由大语言模型(LLM)和多代理编排技术驱动的智能代理,正越来越多地做出影响企业、个人及整个社会的决策。然而,我们不能假定这些系统的可信度:它必须在系统层面进行设计、测量和持续强化,而不仅仅是模型层面。
AI可信度的关键驱动力之一是模型供应链透明度——一个允许企业评估和验证复杂系统中使用的AI组件的来源、安全性和一致性的框架。如果无法清晰了解AI模型是如何构建、训练和部署的,就几乎不可能对系统需求进行风险分析。本文探讨了模型供应链透明度为何至关重要,它如何支持代理式AI中的风险对齐,以及设计可信AI生态系统的最佳实践。
AI供应链日益增长的复杂性
现代AI系统不再是一个单一体,而是由多个相互关联的模型、API和组件(包括外部数据源和工具)组成。这种复杂性引入了新的风险因素,包括:
这些挑战凸显了模型供应链透明度的重要性。这就是为什么行业需要标准化AI供应链可见性,确保模型在构建时考虑了问责制和风险对齐。
为什么风险分析对代理式AI至关重要
与传统AI模型按要求提供输出不同,代理式AI系统基于高级目标自主行动。这种从反应式到主动式AI的转变要求新的风险评估方法。部署多代理编排和函数调用框架的企业必须评估:
风险对齐的AI系统不仅简单地执行功能——它理解自己的局限性,沟通不确定性,并在必要时允许人类监督。
提升AI系统可信度的最佳实践
为确保AI系统可信,企业必须在AI生命周期的每个阶段嵌入安全措施。以下最佳实践可提供帮助:
通过整合这些实践,企业可以主动设计信任机制,而非在部署后补救安全功能。从已建立的实施模式来看(例如ThoughtWorks的Martin Fowler和Bharani Subramaniam的《构建生成式AI产品的新兴模式》),在未来几年中,将信任设计元素融入其中并采用相关最佳实践,对于在企业规模成功部署AI而言,将会变得愈发重要。
结论:信任是系统级重要任务
随着AI从模型向系统过渡,企业必须采用整体方法来处理信任和透明度。这需要:
归根结底,信任不是功能,而是基础。为了确保AI系统安全、有效并与人类价值观对齐,我们必须在每个层面为信任展开设计——从数据和模型到决策和部署。
好文章,需要你的鼓励
亚马逊股价在盘后交易中暴涨超12%,业绩轻松超越分析师预期。公司每股收益1.95美元,大幅超出1.57美元预期;营收1801.7亿美元,同比增长13%。AWS云业务表现亮眼,季度营收330亿美元,同比增长20%,创近年来最强增长。CEO贾西表示AWS增长速度达到2022年以来最快水平,主要得益于AI资源需求激增。公司将2025年资本支出预期从1180亿美元上调至1250亿美元,用于AI数据中心建设。
印度理工学院研究团队从大脑神经科学的戴尔定律出发,开发了基于几何布朗运动的全新AI图像生成技术。该方法使用乘性更新规则替代传统加性方法,使AI训练过程更符合生物学习原理,权重分布呈现对数正态特征。研究团队创建了乘性分数匹配理论框架,在标准数据集上验证了方法的有效性,为生物学启发的AI技术发展开辟了新方向。
微软正将Copilot AI功能集成到Microsoft 365伴侣应用中,包括人员、文件和日历三个任务栏工具。这些轻量级应用仅面向企业和商业客户,将于10月底开始自动安装。Copilot将基于组织数据提供上下文感知的提示和摘要功能。人员应用可显示近期沟通记录,文件应用支持文档摘要和数据分析,日历应用将提供会议摘要。目前人员和文件功能已上线,日历功能即将推出。
Sony AI开发出SoundReactor框架,首次实现逐帧在线视频转音频生成,无需预知未来画面即可实时生成高质量立体声音效。该技术采用因果解码器和扩散头设计,在游戏视频测试中表现出色,延迟仅26.3毫秒,为实时内容创作、游戏世界生成和互动应用开辟新可能。