单任务程序典型架构
(1)从CPU复位时的指定地址开始执行;
(2)跳转至汇编代码startup处执行;
(3)跳转至用户主程序main执行,在main中完成:
a.初试化各硬件设备;
b.初始化各
软件模块;
c.进入死循环(无限循环),调用各模块的处理函数
用户主程序和各模块的处理函数都以C语言完成。用户主程序最后都进入了一个死循环,其首选方案是:
有的程序员这样写:
这个语法没有确切表达代码的含义,我们从for(;;)看不出什么,只有弄明白for(;;)在C语言中意味着无条件循环才明白其意。
下面是几个"
著名"的死循环:
(1)操作系统是死循环;
(2)WIN32程序是死循环;
(3)嵌入式系统软件是死循环;
(4)多线程程序的线程处理函数是死循环。
你可能会辩驳,大声说:"凡事都不是绝对的,2、3、4都可以不是死循环"。Yes,you are right,但是你得不到鲜花和掌声。实际上,这是一个没有太大意义的牛角尖,因为这个世界从来不需要一个处理完几个消息就喊着要OS杀死它的WIN32程序,不需要一个刚开始RUN就自行了断的
嵌入式系统,不需要莫名其妙启动一个做一点事就干掉自己的线程。有时候,过于严谨制造的不是便利而是麻烦。君不见,五层的TCP/IP协议栈超越严谨的ISO/OSI七层协议栈大行其道成为事实上的标准?
经常有网友讨论:
printf("%d,%d",++i,i++); /* 输出是什么?*/ c = a+++b; /* c=? */ |
等类似问题。面对这些问题,我们只能发出由衷的感慨:世界上还有很多有意义的事情等着我们去消化摄入的食物。
实际上,嵌入式系统要运行到世界末日。
中断服务程序 中断是
嵌入式系统中重要的组成部分,但是在标准C中不包含中断。许多编译
开发商在标准C上增加了对中断的支持,提供新的关键字用于标示中断服务程序(ISR),类似于__interrupt、#program interrupt等。当一个函数被定义为ISR的时候,编译器会自动为该函数增加中断服务程序所需要的中断现场入栈和出栈代码。
中断服务程序需要满足如下要求:
(1)不能返回值;
(2)不能向ISR传递参数;
(3) ISR应该尽可能的短小精悍;
(4) printf(char * lpFormatString,…)函数会带来重入和性能问题,不能在ISR中采用。
在某项目的开发中,我们设计了一个队列,在中断服务程序中,只是将中断类型添加入该队列中,在主程序的死循环中不断扫描中断队列是否有中断,有则取出队列中的第一个中断类型,进行相应处理。
/* 存放中断的队列 */ typedef struct tagIntQueue { int intType; /* 中断类型 */ struct tagIntQueue *next; }IntQueue;
IntQueue lpIntQueueHead;
__interrupt ISRexample () { int intType; intType = GetSystemType(); QueueAddTail(lpIntQueueHead, intType);/* 在队列尾加入新的中断 */ } |
在主程序循环中判断是否有中断:
While(1) { If( !IsIntQueueEmpty() ) { intType = GetFirstInt(); switch(intType) /* 是不是很象WIN32程序的消息解析函数? */ { /* 对,我们的中断类型解析很类似于消息驱动 */ case xxx: /* 我们称其为"中断驱动"吧? */ … break; case xxx: … break; … } } } |
按上述方法设计的中断服务程序很小,实际的工作都交由主程序执行了。