ZDNet至顶网软件频道消息:Instagram已基本完成AWS到Facebook基础设施的迁移。听到这个消息,笔者并不惊讶。首先,社交巨头拥有自己的大规模数据中心;其次,作为风头正劲的互联网公司之一,社交巨头拥有着大量的服务,其技术堆栈及API可以轻易满足Instagram的架构需求;再次,在Facebook规模,不管是从成本,还是从性能及可用性上看,迁移都是上上之选。最后,避免平台的约束和锁定,Instagram将有更大的发展空间。
言归正传,下面我们看一些博文摘译:
在2012年加入Facebook之后,我们就发现了多个与Facebook基础设施的集成点,这将允许我们更加快速的开发产品,同时还能提高社区的安全性。开始时,我们使用的是ad-hoc端点接入,但是随后就发现这限制了我们的敏捷性及Facebook服务的利用率。
在2013年4月后,我们开始大规模的迁移到Facebook数据中心,其中的重点是服务可用性的平稳过渡,以及最小化基础设施级改变来避免其中的操作复杂性。开始时非常简单,在EC2和Facebook的一个数据中心之间建立连接,然后一块一块的迁移。
但是随后就发现事情并非那么容易,主要的问题就是Facebook私有IP空间和EC2的冲突。我们的方法是,首先使用Amazon的Virtual Private Cloud(VPC),随后使用Amazon Direct Connect将之与Facebook连接。
鉴于每天都会开启新的EC2实例,这个任务看起来非常艰巨。为了最小化服务停机时间以及操作复杂性,EC2和VPC实例是否在同一个网络至关重要。AWS并没有提供安全组或者私有EC2与VPC网络的共享方式,公共地址空间成为两个私有网络的唯一通信渠道。
因此,我们发明了Neti,一个动态的iptables操作守护进程,使用Python编写,通过ZooKeeper支撑。Neti不仅提供了缺少的安全组功能,还为每个实例都提供了单独的地址,不管是EC2还是VPC。Neti管理了数千个NAT以及实例上的过滤规则,从而保证了独立的、flat “overlay”安全通信。NAT规则会为实例选择一个最有效的通信途径,跨越VPC和EC2边界时会选择公共网络,内部通信则会选择私有网络。这些对我们的应用和后端系统都是透明的,因为Neti会提供一个恰当的iptables规则。
从EC2到VPC花费了大约3周时间,随后所有实例就运行在一个兼容的地址空间,下一个阶段无疑就是迁移到Facebook数据中心。
多来以来,Instagram围绕EC2建立了一整套生产系统管理工具,其中包括配置管理脚本,用于服务开通的Chef,以及服务于运营任务的Fabric,从应用到数据库,这些针对EC2环境的工具都将不适用于数据中心环境。
为了给这些工具提供可移植性,我们使用了LXC。配置工具用于建立基础系统,Chef则运行在container中,用以安装和配置Instagram特定软件。为了支撑横跨EC2及Facebook数据中心的基础设施,当下的Chef加入了新的逻辑用以支撑Facebook内部使用的CentOS,之前在EC2上使用的是Ubuntu。同时,用于基础任务的EC2命令行工具也被一个全新的工具代替,它被设计成了一个抽象层,提供了类似EC2工作流中的环境,为技术和人们使用方式做过渡。在这些都完成后,VPC到数据中心的迁移只花费了两周。
写在最后
对于Instagram来说,迁移可以带来显而易见的好处,同时,我们也相信会有更多这个类型的应用被收购后会做出类似的举措,比如未来我们可能会看到WhatsApp迁离SoftLayer。然而对于云服务提供商来说,这绝对不是件想看到的事情,Instagram之类的到还好说,如果是Netflix这样的合作伙伴,撇开直接收入,生态圈受到的影响显然更加深远。
好文章,需要你的鼓励
这项由加州大学圣地亚哥分校和微软研究院合作开发的REAL框架,通过程序分析反馈训练大型语言模型生成高质量代码。与传统方法不同,REAL采用强化学习将代码安全性和可维护性作为奖励信号,不依赖人工标注或特定规则。研究在多个数据集上的实验表明,REAL在保证功能正确性的同时显著提高了代码质量,有效解决了"即兴编程"中的安全漏洞和维护性问题,为AI辅助编程提供了新的范式。
加州大学伯克利分校与Meta FAIR研究团队开发了"Self-Challenging"框架,让大语言模型通过自己创建和解决任务来提升能力。该方法引入创新的"Code-as-Task"格式,包含指令、验证函数、示例解决方案和失败案例,确保生成的任务既可行又有挑战性。在工具计算、网页浏览、零售服务和航班预订四种环境测试中,仅使用自生成训练数据,Llama-3.1-8B模型性能提升了两倍多,证明AI可以通过自我挑战实现有效学习,减少对人类标注的依赖。
南洋理工大学与SenseTime Research合作提出了PoseFuse3D-KI,一种创新的人体中心关键帧插值框架。该方法将3D人体模型信息融入扩散过程,解决了现有技术在处理复杂人体动作时产生扭曲结果的问题。研究团队开发了专门的SMPL-X编码器直接从3D空间提取几何信息,并设计了融合网络将3D线索与2D姿态无缝整合。他们还构建了CHKI-Video数据集,包含2,614个视频片段及完整的人体标注。实验结果显示,PoseFuse3D-KI在PSNR上提升9%,LPIPS减少38%,显著超越现有方法。
这项研究提出了LongGuide算法,解决了大型语言模型在长文本生成任务中的局限性。研究团队发现,仅依靠上下文学习无法使模型充分掌握文本的语言和格式特性。LongGuide通过自动生成两种指导原则:度量指导原则和输出约束指导原则,显著提升了模型性能。在七种长文本生成任务中,该方法使开源和闭源模型的ROUGE-L评分平均提高约6%。LongGuide具有通用性强、易于学习、成本效益高等优点,为提升AI长文本生成能力提供了新方向。