Spark首次由Databricks发布,融资3300万美元;Hadoop再次得到MapR的1.1亿美元的融资,以促进其在激烈市场竞争中的成长。在未来的大数据处理中,Spark将会简化现有的数据管道处理,融合多种功能,使得数据处理更快、更方便和更灵活;Hadoop也将会以更快、更简单的方式读写大数据。巨大的融资金额将会促进Spark和Hadoop的大力发展,它们将以怎样的姿态立足未来的大数据市场呢,是并驾齐驱?还是独占鳌头?让我们拭目以待。
Databricks发布Spark,融资3300万美元
近日,Databricks在Spark峰会上发布了Spark云服务,同时筹集了3300万美元的风险资金。公司新发布的Spark云服务采用的是Spark框架,据说此框架更快、更方便和更灵活,其云服务的设计有助于简化现有的数据管道处理,包含了大量需要企业管理的数据存储和数据处理系统,同时将诸多供能(如为了建立和显示机器学习模型的各种处理引擎、“记事本”和仪表板功能等)进行有效的融合。
Hadoop的供应商MapR考虑到在MapReduce的技术和生态系统上投入的大量资金和人力资源,对Spark目前的应用有所迟疑,但仍支持此处理框架,并且认为它读写大数据的方式会比MapReduce更快、更简单。
MapR再融资1.1亿美元推动Hadoop成长
与此同时,MapR也筹集了1.1亿美元推动Hadoop的发展。公司的CEO肯定了公司在专有工具上的优势,为顾客在组件提供了更多的选择:MapR支持少数的SQL-on-Hadoop工具,包括Hive和Drill,同时也支持Cloudera-developed Impala 和惠普的Vertica software。
此次MapR在Hadoop领域的融资力度明显加强,融资总额超过之前的总额5900万美元。当然,对于Hadoop的融资,Cloudera的5轮融资高达3亿美元,Hortonwork从创立之初到2013年的3年内融资金额就达到了1.98亿美元。
Spark和Hadoop将走向何方
在激烈的市场竞争中,Spark和Hadoop的未来发展还处于或多或少的争议中。
Spark服务的数据默认存储在亚马逊S3中,如果使用者拥有已经在AWS上正常运行的Hadoop集群,也可以将数据存储在HDFS中。Databricks可以从MongoDB、MySQL和亚马逊Redshift读进数据,也可以导出数据。公司有望支持混合cloud-local Spark环境,放在完全开放的Spark云中,能够有效实现工作负载的可移植性。
Hadoop的融资企业MapR选择了Google作为其合作伙伴之一,他们的走向代表了大数据的未来。Hadoop供应商竞争者也面临着巨大的竞争挑战。
Spark和Hadoop作为有效的数据处理框架,各自具有明显的优势,作为使用者,更快、更方便的解决自身所需也许是他们进行选择的因素之一,各融资者应加强各自服务应用的功能,更好地服务于客户,才能带来可观的市场利润。
参考文献:
Databricks announces a Spark cloud and M in venture capital(Databricks announces a Spark cloud and M in venture capital)
MapR raises 0M to fuel its enterprise Hadoop push(http://gigaom.com/2014/06/30/mapr-raises-110m-to-fuel-its-enterprise-hadoop-push/)
好文章,需要你的鼓励
随着AI的使用、创新和监管混乱超过认可的标准,IT领导者只能开发内部方法来减轻AI风险,依靠框架、工具和他们的同事来正确使用AI。
几年前,当澳大利亚红十字会(Australian Red Cross)这个社区服务慈善机构开始进行数字化转型的时候,发现有很多不同的系统无法协同工作。如今,经过数据梳理和发挥作用,可以满足不断变化的需求。
在此次活动中,IBM展示了最先进的IBM Quantum Heron计算机是如何以比以前更高的精度和速度执行复杂的量子算法,同时为进行高级分子模拟的新方法铺平了道路。
想象一下,一个人工智能系统不仅能阅读文本或识别图像,还能够同时读、写、看、听和创造。这其实就是多模态人工智能的精髓。这些先进的多模态人工智能系统可以同时处理和整合多种形式的数据,包括文本、图像、音频甚至视频。这就像是赋予了人工智能一整套的感官。